References
- Abdul Baki, A.A. & Anderson, J.D. 1973. Vigour determination in soybean by multiple criteria. Crop Sciences, 13: 630-633. https://doi.org/10.2135/cropsci1973.0011183X001300060013x
- Abrantes, F.D.L., Ribas, A.F., Vieira, L.G.E., Machado-Neto, N.B. & Custodio, C.C. 2019. Seed germination and seedling vigour of transgenic tobacco (Nicotiana tabacum L.) with increased proline accumulation under osmotic stress. The Journal of Horticultural Science and Biotechnology, 94(2): 220-228. https://doi.org/10.1080/14620316.2018.1499423
- Awaad, H.A. 2023. Mitigation options towards sustainability via agricultural practices. In: Salinity resilience and sustainable crop production under climate change. Earth and Environmental Sciences Library, pp. 303-332. Cham, Switzerland, Springer Nature. https://doi.org/10.1007/978-3-031-48542-8_8
- Carrera-Castaño, G., Calleja-Cabrera, J., Pernas, M., Gómez, L. & Oñate-Sánchez, L. 2020. An updated overview on the regulation of seed germination. Plants, 9(6): 703. https://doi.org/10.3390/plants9060703
- Côme, D. 1970. Les Obstacles à la Germination [Obstacles to Germination]. Monographies de Physiologie Végétale [Monographs on Plant Physiology]. No. 6. Masson, Paris.
- Coolbear, P., Francis, A. & Grierson D. 1984. The effect of low temperature pre-sowing treatment on the germination performance and membrane integrity of artificially aged tomato seeds. Journal of Experimental Botany 35(11): 1609-1617. https://doi.org/10.1093/jxb/35.11.1609
- de Paiva Gonçalves, J., Gasparini, K., Picoli, E.T., Costa, M.D.B., Araujo, W.L., Zsögön, A. & Ribeiro, D.M. 2024. Metabolic control of seed germination in legumes. Journal of Plant Physiology, 154206. https://doi.org/10.1016/j.jplph.2024.154206
- Debez, A., Belghith, I., Pich, A., Taamalli, W., Abdelly, C. & Braun, H.P. 2018. High salinity impacts germination of the halophyte Cakile maritima but primes seeds for rapid germination upon stress release. Physiologia Plantarum, 164(2): 134-144. https://doi.org/10.1111/ppl.12679
- Devkota, K.P., Devkota, M., Rezaei, M. & Oosterbaan, R. 2022. Managing salinity for sustainable agricultural production in saltaffected soils of irrigated drylands. Agricultural Systems, 198: 103390. https://doi.org/10.1016/j.agsy.2022.103390
- Fatehi, F.S. & Ehsanpour, A.A. 2022. The study of salt tolerance in regenerated plants from the roots of tobacco (Nicotiana rustica L.). Environmental Stresses in Crop Sciences, 15(4): 1127-1141. https://doi.org/10.22077/escs.2021.4223.1995
- Finch-Savage, W.E. & Bassel, G.W. 2016. Seed vigour and crop establishment: extending performance beyond adaptation. Journal of Experimental Botany, 67(3): 567-591. https://doi.org/10.1093/jxb/erv490
- Florentine, S.K., Weller, S., Graz, P.F., Westbrooke, M., Florentine, A., Javaid, M., Fernando, N., Chauhan, B.S. & Dowling, K. 2016. Influence of selected environmental factors on seed germination and seedling survival of the arid zone invasive species tobacco bush (Nicotiana glauca R. Graham). The Rangeland Journal, 38(4): 417-425. https://doi.org/10.1071/RJ16022
- Gul, Z., Tang, Z.H., Arif, M. & Ye, Z. 2022. An insight into abiotic stress and influx tolerance mechanisms in plants to cope in saline environments. Biology, 11(4): 597. https://doi.org/10.3390/biology11040597
- Haider, M.Z., Ashraf, M.A., Rasheed, R., Hussain, I., Riaz, M., Qureshi, F.F., Iqbal, M. & Hafeez, A. 2023. Impact of salinity stress on medicinal plants. In: A. Husen & M. Iqbal, eds. Medicinal plants: their response to abiotic stress. pp. 199-239. Singapore, Springer Nature. https://doi.org/10.1007/978-981-19-5611-9_8
- Hajiboland, R., Cheraghvareh, L. & Poschenrieder, C. 2017. Improvement of drought tolerance in tobacco (Nicotiana rustica L.) plants by silicon. Journal of Plant Nutrition, 40(12): 1661-1676. https://doi.org/10.1080/01904167.2017.1310887
- Halitim A. 1988. Sols des régions arides d’Algérie [Soils of the arid regions of Algeria]. p. 384. OPU, Algiers, Algeria.
- Kheloufi, A. & Mansouri, L.M. 2019. Anatomical changes induced by salinity stress in root and stem of two acacia species (A. karroo and A. saligna). Agriculture and Forestry, 65(4): 137-150. https://doi.org/10.17707/AgricultForest.65.4.12
- Kheloufi, A., Mansouri, L.M., Mami, A. & Djelilate, M. 2019. Physio-biochemical characterization of two acacia species (A. karroo Hayn and A. saligna Labill.) under saline conditions. Reforesta, 7: 33-49. https://doi.org/10.21750/REFOR.7.04.66
- Kheloufi, A., Mansouri, L.M. & Meradsi, F. 2023. Effect of salinity on the germination of three species of the Acacia genus (A. karroo, A. saligna and A. tortilis). Acta Universitatis Sapientiae Agriculture and Environment, 15: 52-65. https://doi.org/10.2478/ausae-2023-0005
- Mansouri, L.M., Heleili, N., Boukhatem, Z.F. & Kheloufi, A. 2019. Seed germination and radicle establishment related to type and level of salt in common bean (Phaseolus vulgaris L. var. Djedida). Cercetări Agronomice în Moldova, 52(3): 262-277. https://doi.org/10.46909/cerce-2019-0026
- Mansouri, L.M. & Kheloufi, A. 2024. Salinity effects on germination of Portulaca oleracea L.: A multipurpose halophyte from arid rangelands. Journal of Applied Research on Medicinal and Aromatic Plants, 41: 100549. https://doi.org/10.1016/j.jarmap.2024.100549
- McGaughey, S.A., Qiu, J., Tyerman, S.D. & Byrt, C.S. 2018. Regulating root aquaporin function in response to changes in salinity. Annual Plant Reviews Online, 1(2): 381-416. https://doi.org/10.1002/9781119312994.apr0626
- Mehmood, F., Ubaid, Z., Shahzadi, I., Ahmed, I., Waheed, M.T., Poczai, P. & Mirza, B. 2020. Plastid genomics of Nicotiana (Solanaceae): insights into molecular evolution, positive selection and the origin of the maternal genome of Aztec tobacco (Nicotiana rustica). PeerJ, 8: e9552. https://doi.org/10.7717/peerj.9552
- Nejatzadeh-Barandozi, F. 2018. Data on seed priming and seedling growth of Barli 21 tobacco varieties under polyethylene glycol and salinity stress conditions. Data in Brief, 20: 454-458. https://doi.org/10.1016/j.dib.2018.08.033
- Orchard, T. 1977. Estimating the parameters of plant seedling emergence. Seed Science and Technology, 5(1): 61-69.
- Rashed, S.H. 2020. Effect of mole drain spacing, some soil amendments and boron fertilization on improving some soil properties and sugar beet productivity in salt-affected soils. Journal of Soil Sciences and Agricultural Engineering, 11(7): 341-347. https://doi.org/10.21608/jssae.2020.109701
- Reed, R.C., Bradford, K.J. & Khanday, I. 2022. Seed germination and vigor: ensuring crop sustainability in a changing climate. Heredity, 128(6): 450-459. https://doi.org/10.1038/s41437-022-00497-2
- SAS. 2002. Statistical Analysis System: Version 9.0. SAS Institute Inc., Cary.
- Shin, S., Aziz, D., El-sayed, M.E.A., Hazman, M., Almas, L., McFarland, M., El Din, A.S. & Burian, S.J. 2022. Systems thinking for planning sustainable desert agriculture systems with saline groundwater irrigation: a review. Water, 14(20): 3343. https://doi.org/10.3390/w14203343
- Singh, M., Nara, U., Kumar, A., Choudhary, A., Singh, H. & Thapa, S. 2021. Salinity tolerance mechanisms and their breeding implications. Journal of Genetic Engineering and Biotechnology, 19(1): 173. https://doi.org/10.1186/s43141-021-00274-4
- Soni, P.G., Basak, N., Rai, A.K., Sundha, P., Chandra, P. & Yadav, R.K. 2023. Occurrence of salinity and drought stresses: status, impact, and management. In: A. Kumar, P. Dhansu & A. Mann, eds. Salinity and drought tolerance in plants. pp. 1-28. Singapore, Springer Nature. https://doi.org/10.1007/978-981-99-4669-3_1
- Srivastava, P., Wu, Q.S. & Giri, B. 2019. Salinity: an overview. In: B. Giri & A. Varma, eds. Microorganisms in Saline Environments: Strategies and Functions. Soil Biology Series, Vol. 56. pp. 3-18. Switzerland, Springer Nature. https://doi.org/10.1007/978-3-030-18975-4_1
- Tlahig, S., Bellani, L., Karmous, I., Barbieri, F., Loumerem, M. & Muccifora, S. 2021. Response to salinity in legume species: An insight on the effects of salt stress during seed germination and seedling growth. Chemistry & Biodiversity, 18(4): e2000917. https://doi.org/10.1002/cbdv.202000917
- Trușcă, M., Gâdea, Ș., Vidican, R., Stoian, V., Vâtcă, A., Balint, C., Stoian, V.A., Horvat, M. & Vâtcă, S. 2023. Exploring the research challenges and perspectives in ecophysiology of plants affected by salinity stress. Agriculture, 13(3): 734. https://doi.org/10.3390/agriculture13030734
- Uçarlı, C. 2020. Effects of salinity on seed germination and early seedling stage. In: S. Fahad, S. Saud, Y. Chen, C. Wu & D. Wang, eds. Abiotic Stress in Plants, pp. 1-27. InTechOpen, London. https://doi.org/10.5772/intechopen.93647
- Xu, Y., Zheng, X., Song, Y., Zhu, L., Yu, Z., Gan, L., Zhou, S., Liu, H., We, F. & Zhu, C. 2018. NtLTP4, a lipid transfer protein that enhances salt and drought stresses tolerance in Nicotiana tabacum. Scientific Reports, 8(1): 8873. https://doi.org/10.1038/s41598-018-27274-8
- Yan, H., Jia, H., Chen, X., Hao, L., An, H. & Guo, X. 2014. The cotton WRKY transcription factor GhWRKY17 functions in drought and salt stress in transgenic Nicotiana benthamiana through ABA signaling and the modulation of reactive oxygen species production. Plant and Cell Physiology, 55(12): 2060-2076. https://doi.org/10.1093/pcp/pcu133
- Zhang, X., Zhang, Y., Li, M., Jia, H., Wei, F., Xia, Z., Zhang, X., Chang, J. & Wang, Z. 2024. Overexpression of the WRKY transcription factor gene NtWRKY65 enhances salt tolerance in tobacco (Nicotiana tabacum). BMC Plant Biology, 24(1): 326. https://doi.org/10.1186/s12870-024-04966-0
- Zou, X., BK, A., Abu-Izneid, T., Aziz, A., Devnath, P., Rauf, A., Mitra, S., Emran, T.B., Mujawah, A.A.H., Lorenzo, J.M., Mubarak, M.S., Wilairatana, P. & Suleria, H.A.R. 2021. Current advances of functional phytochemicals in Nicotiana plant and related potential value of tobacco processing waste: A review. Biomedicine & Pharmacotherapy, 143: 112191. https://doi.org/10.1016/j.biopha.2021.112191
