Have a personal or library account? Click to login
Assessing the Impact of UAV Flight Altitudes on the Accuracy of Multispectral Indices Cover

Assessing the Impact of UAV Flight Altitudes on the Accuracy of Multispectral Indices

Open Access
|Dec 2024

References

  1. Avtar R., Suab S.A., Syukur M.S., Korom A., Umarhadi D.A., Yunus A.P. (2020): Assessing the influence of UAV altitude on extracted biophysical parameters of young oil palm. Remote Sensing, 12(18): 3030. https://doi.org/10.3390/rs12183030
  2. Bewick V., Cheek L., Ball J. (2004): Statistics review 9: One-way analysis of variance. Critical Care, 8: 130. https://doi.org/10.1186/cc2836
  3. Campi T., Cruciani S., Maradei F., Feliziani M. (2019): Innovative design of drone landing gear used as a receiving coil in wireless charging application. Energies, 12(18): 3483. https://doi.org/10.3390/en12183483
  4. Herrmann I., Bdolach E., Montekyo Y., Rachmilevitch S., Townsend P.A., Karnieli A. (2020): Assessment of maize yield and phenology by drone-mounted superspectral camera. Precision Agriculture, 21: 51-76. https://doi.org/10.1007/s11119-019-09659-5
  5. Ivošević B., Kostić M., Ljubičić N., Grbović Ž., Panić M. (2023a): Chapter 2 - A drone view for agriculture. In: Unmanned Aerial Systems in Agriculture. Bochtis D., Tagarakis A.C., Kateris D. (Eds.), Academic Press, pp. 25–47. https://doi.org/10.1016/B978-0-323-91940-1.00002-5
  6. Ivošević B., Kostić M., Ljubičić N., Grbović Ž., Panić M. (2023b): Chapter 3 - Application of unmanned aerial systems to address real-world issues in precision agriculture. In: Unmanned Aerial Systems in Agriculture. Bochtis D., Tagarakis A.C., Kateris D. (Eds.), Academic Press, pp. 51-69. https://doi.org/10.1016/B978-0-323-91940-1.00003-7
  7. Jełowicki L., Sosnowicz K., Ostrowski W., Osińska-Skotak K., Bakuła K. (2020): Evaluation of rapeseed winter crop damage using UAV-based multispectral imagery. Remote Sensing, 12(16): 2618. https://doi.org/10.3390/rs12162618
  8. Jiang R., Wang P., Xu Y., Zhou Z., Luo X., Lan Y., Zhao G., Sanchez-Azofeifa A., Laakso K. (2020): Assessing the operation parameters of a low-altitude UAV for the collection of NDVI values over a paddy rice field. Remote Sensing, 12(11): 1850. https://doi.org/10.3390/rs12111850
  9. Jovanović M., Pavić D., Mesaroš M., Stankov U., Pantelić M., Armenski T., Dolinaj D., Popov S., Ćosić Đ., Popović L., Frank A., Crnojević V. (2013): Water shortage and drought monitoring in Bačka region (Vojvodina, North Serbia) – setting-up measurement stations network. Geographica Pannonica, 17: 114-124.
  10. Jurado J.M., Ortega L., Cubillas J.J., Feito F.R. (2020): Multispectral mapping on 3D models and multi-temporal monitoring for individual characterization of olive trees. Remote Sensing, 12(7): 1106. https://doi.org/10.3390/rs12071106
  11. Kim H.-Y. (2015): Statistical notes for clinical researchers: post-hoc multiple comparisons. Restorative Dentistry & Endodontics, 40(2): 172. https://doi.org/10.5395/rde.2015.40.2.172
  12. Liu S., Zhang B., Yang W., Chen T., Zhang H., Lin Y., Tan J., Li X., Gao Y., Yao S., Lan Y., Zhang L. (2023): Quantification of physiological parameters of rice varieties based on multi-spectral remote sensing and machine learning models. Remote Sensing, 15(2): 453. https://doi.org/10.3390/rs15020453
  13. Lukas V., Huňady I., Kintl A., Mezera J., Hammerschmiedt T., Sobotková J., Brtnický M., Elbl J. (2022): Using UAV to identify the optimal vegetation index for yield prediction of oil seed rape (Brassica napus L.) at the flowering stage. Remote Sensing, 14: 4953. https://doi.org/10.3390/rs14194953
  14. Mesas-Carrascosa F.J., Rumbao C.I., Torres-Sánchez J., García-Ferrer A., Peña J.M., López Granados F. (2017): Accurate orthomosaicked six-band multispectral UAV images as affected by mission planning for precision agriculture proposes. International Journal of Remote Sensing, 38(8-10): 2161-2176. http://doi.org/10.1080/01431161.2016.1249311
  15. Mesas-Carrascosa F.-J., Torres-Sánchez J., Clavero-Rumbao I., García-Ferrer A., Peña J.-M., Borra-Serrano I., López-Granados F. (2015): Assessing optimal flight parameters for generating accurate multispectral orthomosaicks by uav to support site-specific crop management. Remote Sensing, 7: 12793-12814. https://doi.org/10.3390/rs71012793
  16. Njane S.N., Tsuda S., van Marrewijk B.M., Polder G., Katayama K., Tsuji H. (2023): Effect of varying UAV height on the precise estimation of potato crop growth. Frontiers in Plant Science, 14: 1233349. https://doi.org/10.3389/fpls.2023.1233349
  17. Olson D., Chatterjee A., Franzen D.W., Day S.S. (2019): Relationship of drone-based vegetation indices with corn and sugarbeet yields. Agronomy Journal, 111(5): 2545-2557. https://doi.org/10.2134/agronj2019.04.0260
  18. Otto A., Agatz N., Campbell J., Golden B., Pesch E. (2018): Optimization approaches for civil applications of unmanned aerial vehicles (UAVs) or aerial drones: a survey. Networks, 72(4): 411-458. https://doi.org/10.1002/net.21818
  19. Pipatsitee P., Tisarum R., Taota K. Samphumphuang A., Cha-um S. (2023): Effectiveness of vegetation indices and UAV-multispectral imageries in assessing the response of hybrid maize (Zea mays L.) to water deficit stress under field environment. Environmental Monitoring and Assessment, 195: 128. https://doi.org/10.1007/s10661-022-10766-6
  20. Primicerio J., Di Gennaro S.F., Fiorillo E., Genesio L., Lugato E., Matese A., Vaccari F.P. (2012): A Flexible Unmanned Aerial Vehicle for Precision Agriculture. Precision Agriculture, 13(5): 517-523. https://doi.org/10.1007/s11119-012-9257-6
  21. Qi H., Wu Z., Zhang L., Li J., Zhou J., Jun Z., Zhu B. (2021): Monitoring of peanut leaves chlorophyll content based on drone-based multispectral image feature extraction. Computers and Electronics in Agriculture, 187: 106292. https://doi.org/10.1016/j.compag.2021.106292
  22. Rane N.L. & Choudhary S.P. (2023): Remote sensing (RS), UAV/drones, and machine learning (ML) as powerful techniques for precision agriculture: effective applications in agriculture. International Research Journal of Modernization in Engineering Technology and Science, 5(4): 4375-4392. https://www.doi.org/10.56726/IRJMETS36817
  23. Rasmussen J., Ntakos G., Nielsen J., Svensgaard J., Poulsen R., Christensen S. (2016): Are vegetation indices derived from consumer-grade cameras mounted on UAVs sufficiently reliable for assessing experimental plots? European Journal of Agronomy, 74: 75-92. https://doi.org/10.1016/j.eja.2015.11.026
  24. Stow D., Nichol C., Wade T., Jakob A., Gillian S., Helfter C. (2019): Illumination geometry and flying height influence surface reflectance and NDVI derived from multispectral UAS imagery. Drones, 3(3): 55. https://doi.org/10.3390/drones3030055
  25. Su J., Yi D., Su B., Mi Z., Liu C., Hu X., Xu X., Guo L., Chen W.-H. (2020): Aerial visual perception in smart farming: field study of wheat yellow rust monitoring. IEEE Transactions on Industrial Informatics, 17(3): 2242-2249. 10.1109/TII.2020.2979237
  26. Szeląg B., Sobura S., Stoińska R. (2023): Application of multispectral images from unmanned aerial vehicles to analyze operations of a wastewater treatment plant. Energies, 16(6): 2871. https://doi.org/10.3390/en16062871
  27. Wilber A.L., Czarnecki J.M.P., McCurdy J.D. (2021): An ArcGIS Pro workflow to extract vegetation indices from aerial imagery of small-plot turfgrass research. Crop Science, 62: 503-511. https://doi.org/10.1002/csc2.20669
  28. WRB (2014): World Reference Base for soil resources 2014: International soil classification system for naming soils and creating legends for soil maps. Food and Agriculture Organization of the United Nations, Rome. Available at: https://openknowledge.fao.org/server/api/core/bitstreams/bcdecec7-f45f-4dc5-beb1-97022d29fab4/content (Accessed: 1 September 2023).
DOI: https://doi.org/10.2478/contagri-2024-0019 | Journal eISSN: 2466-4774 | Journal ISSN: 0350-1205
Language: English
Page range: 157 - 164
Submitted on: Oct 10, 2023
|
Accepted on: Sep 6, 2024
|
Published on: Dec 12, 2024
Published by: University of Novi Sad
In partnership with: Paradigm Publishing Services
Publication frequency: 2 issues per year

© 2024 Zoran Stamenković, Krstan Kešelj, Marko Kostić, Vladimir Aćin, Dragana Tekić, Mladen Ivanišević, Tihomir Novaković, published by University of Novi Sad
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.