Have a personal or library account? Click to login
Application of Machine Learning in Estimating Milk Yield According to the Phenotypic and Pedigree Data of Holstein-Friesian Cattle in Serbia Cover

Application of Machine Learning in Estimating Milk Yield According to the Phenotypic and Pedigree Data of Holstein-Friesian Cattle in Serbia

Open Access
|Dec 2023

References

  1. Chafai N., Hayah I., Houaga I., Badaoui B. (2023): A review of machine learning models applied to genomic prediction in animal breeding. Frontiers in Genetics, 14: 1150596. https://doi.org/10.3389/fgene.2023.1150596
  2. Chollet F. (2017): Deep Learning with Python. Manning Publications Co.
  3. Dekkers J.C.M. (2004): Commercial application of marker- and gene-assisted selection in livestock: strategies and lessons. Journal of Animal Science, 82 E-Suppl: E313-328. https://doi.org/10.2527/2004.8213_supplE313x
  4. FAO (2018): The state of Food and Agriculture. In: The State of the World. https://www.fao.org/3/i9549en/I9549EN.pdf
  5. Foley J.A., Ramankutty N., Brauman K.A., Cassidy E.S., Gerber J.S., Johnston M., Mueller N.D., O’Connell C., Ray D.K., West P.C., Balzer C., Bennett E.M., Carpenter S.R., Hill J., Monfreda C., Polasky S., Rockström J., Sheehan J., Siebert S., Tilman D., Zaks D.P.M. (2011): Solutions for a cultivated planet. Nature, 478(7369): 337-342. https://doi.org/10.1038/nature10452
  6. González-Recio O., Rosa G.J.M., Gianola D. (2014): Machine learning methods and predictive ability metrics for genome-wide prediction of complex traits. Livestock Science, 166: 217-231. https://doi.org/https://doi.org/10.1016/j.livsci.2014.05.036
  7. Hayes B.J., Bowman P.J., Chamberlain A.J., Goddard M.E. (2009): Invited review: Genomic selection in dairy cattle: Progress and challenges. Journal of Dairy Science, 92(2): 433-443. https://doi.org/https://doi.org/10.3168/jds.2008-1646
  8. ICAR (2023): The Global Standard for Livestock Data. Statistics 2023. Available at: https://my.icar.org/stats/list (accessed on 17 January 2023).
  9. Meyer K. (2007): WOMBAT - A tool for mixed model analyses in quantitative genetics by restricted maximum likelihood (REML). Journal of Zhejiang University SCIENCE B, 8(11): 815-821. https://doi.org/10.1631/jzus.2007.B0815
  10. Morota G., Ventura R.V, Silva F.F., Koyama M., Fernando S.C. (2018): Big Data Analytics and Precision Animal Agriculture Symposium: Machine learning and data mining advance predictive big data analysis in precision animal agriculture 1. Journal of Animal Science, 96(4): 1540-1550. https://doi.org/10.1093/jas/sky014
  11. Nayeri S., Sargolzaei M., Tulpan D. (2019): A review of traditional and machine learning methods applied to animal breeding. Animal Health Research Reviews, 20(1): 31-46. https://doi.org/10.1017/S1466252319000148
  12. Shahinfar S., Mehrabani-Yeganeh H., Lucas C., Kalhor A., Kazemian M., Weigel K.A. (2012): Prediction of Breeding Values for Dairy Cattle Using Artificial Neural Networks and Neuro-Fuzzy Systems. Computational and Mathematical Methods in Medicine, 127130. https://doi.org/10.1155/2012/127130
  13. Stanojević D., Đedović R., Bogdanović V., Popovac M., Perišić P., Beskorovajni R., Lazarević M. (2015): The potentials of using selection index in the assessment of breeding values of Holstein breeds in Serbia. Biotechnology in Animal Husbandry, 31(4): 523–532. https://doi.org/10.2298/bah1504523s
  14. Štrbac L., Pracner D., Šaran M., Janković D., Trivunović S., Ivković M., Tarjan L., Dedović N. (2023): Mathematical Modeling and Software Tools for Breeding Value Estimation Based on Phenotypic, Pedigree and Genomic Information of Holstein Friesian Cattle in Serbia. Animals, 13(4): 597. https://doi.org/10.3390/ani13040597
  15. Tarjan L., Šenk I., Pracner D., Rajković D., Štrbac L. (2021): Possibilities for applying machine learning in dairy cattle breeding. 20th International Symposium INFOTEH - Jahorina (INFOTEH), 1-6. https://doi.org/10.1109/INFOTEH51037.2021.9400672
  16. UN (2019): World Population Prospects 2019. Available at: https://reliefweb.int/attachments/f46d3fce-97bb-327f-a065-a813f9969af7/WPP2019_Highlights.pdf
  17. Walstra P., Walstra P., Wouters J.T.M., Geurts T.J. (2005): Dairy Science and Technology (2nd ed.). CRC Press, Taylor & Francis. https://doi.org/10.1201/9781420028010
DOI: https://doi.org/10.2478/contagri-2023-0024 | Journal eISSN: 2466-4774 | Journal ISSN: 0350-1205
Language: English
Page range: 181 - 187
Submitted on: Sep 30, 2023
Accepted on: Nov 23, 2023
Published on: Dec 22, 2023
Published by: University of Novi Sad
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2023 Laslo Tarjan, Ivana Šenk, Doni Pracner, Ljuba Štrbac, Momčilo Šaran, Mirko Ivković, Nebojša Dedović, published by University of Novi Sad
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.