References
- Agyemang, M., Barker, K., & Alhajj, R. (2006). A comprehensive survey of numeric and symbolic outlier mining techniques. Intelligent Data Analysis, 10(6), 521–538. https://doi.org/10.3233/IDA-2006-10604
- Amer, M., & Goldstein, M. (2012). Nearest-Neighbor and Clustering based Anomaly Detection Algorithms for RapidMiner. In 3rd RapidMiner Community Meeting and Conferernce. https://doi.org/10.5455/ijavms.141
- Bailey, J. J., & O’Connor, R. J. (1975). Operationalizing Incrementalism: Measuring the Muddles. Public Administration Review, 35(1), 60–66. https://doi.org/10.2307/975202
- Barnett, V., & Lewis, T. (1994). Outliers in Statistical Data (3rd Ed.). Wiley.
- Bartolucci, A. A. (2016). Methodologies in Outlier Analysis. In A. A. Bartolucci, K. P. Singh, & S. Bae (Eds.), Introduction to Statistical Analysis of Laboratory Data (pp. 79–111). John Wiley & Sons.
- Baumgartner, F. R., & Epp, D. A. (2013). Explaining Punctuations (Paper presented at the annual meetings of the Comparative Agendas Project, Antwerp, Belgium, June 27–29, 2013). Retrieved from https://unc.live/3afbnxB
- Baumgartner, F. R., Green-Pedersen, C., & Jones, B. D. (2006). Comparative studies of policy agendas. Journal of European Public Policy, 13(7), 959–974.
- Baumgartner, F. R., & Jones, B. D. (Eds.). (2002). Policy dynamics. Chicago: University of Chicago Press.
- Bozeman, B. (1977). The Effect of Economic and Partisan Change On Federal Appropriations. Western Political Quarterly, 30(1), 112–124. https://doi.org/10.1177/106591297703000111
- Breunig, C. (2006). The more things change, the more things stay the same: a comparative analysis of budget punctuations. Journal of European Public Policy, 13(7), 1069–1085. https://doi.org/10.1080/13501760600924167
- Breunig, C., & Jones, B. D. (2011). Stochastic Process Methods with an Application to Budgetary Data. Political Analysis, 19(1), 103–17.
- Breunig, C., & Koski, C. (2006). Punctuated Equilibria and Budgets in the American States. Policy Studies Journal, 34(3), 363–379. https://doi.org/10.1111/j.1541-0072.2006.00177.x
- Breunig, M., Kriegel, H.-P., Ng, R., & Sander, J. (2000). LOF: Identifying Density-Based Local Outliers. In ACM Sigmod Record (Vol. 29, pp. 93–104). Dallas, TX. https://doi.org/10.1145/342009.335388
- Bunce, V., & Echols, J. M. (1978). Power and Policy in Communist Systems: The Problem of ‘Incrementalism’. The Journal of Politics, 40(4), 911–932. https://doi.org/10.2307/2129902
- Chandola, V., Banerjee, A., & Kumar, V. (2009). Anomaly Detection: A Survey. ACM Computing Surveys, 41(3), 1–58. https://doi.org/10.1145/1541880.1541882
- Cox, J., Hager, G., & Lowery, D. (1993). Regime Change in Presidential and Congressional Budgeting: Role Discontinuity or Role Evolution? American Journal of Political Science, 37(1), 88–118. https://doi.org/10.2307/2111525
- Davis, O. A., Dempster, M. A. H., & Wildavsky, A. (1974). Towards A Predictive Theory of Government Expenditure: US Domestic Appropriations. British Journal of Political Science, 4(4), 419–452. https://doi.org/DOI:10.1017/S0007123400009650
- de Crombrugghe, A., & Lipton, D. (1994). The Government Budget and the Economic Transformation of Poland. In O. Blanchard, K. Froot, & J. Sachs (Eds.), Transition in Eastern Europe (Vol. 2, pp. 111–136). Chicago, Illinois: University of Chicago Press.
- Dempster, M., & Wildavsky, A. (1979). On Change: Or, There is No Magic Size for An Increment. Political Studies, 27(3), 371–389. https://doi.org/10.1111/j.1467-9248.1979.tb01210.x
- Denning, D. (1986). An Intrusion-Detection Model. In IEEE Transactions on Software Engineering (Vol. 13, pp. 118–133). IEEE. https://doi.org/10.1109/SP.1986.10010
- Dezhbakhsh, H., Tohamy, S. M., & Aranson, P. H. (2003). A new approach for testing budgetary incrementalism. Journal of Politics, 65(2), 532–558. https://doi.org/10.1111/1468-2508.t01-3-00014
- Endler, D. (1998). Intrusion detection. Applying machine learning to Solaris audit data. In Proceedings 14th Annual Computer Security Applications Conference (pp. 268–279). Phoenix, AZ. https://doi.org/10.1109/CSAC.1998.738647
- Fenno, R. F. (1966). The Power of the Purse. Boston: Little Brown.
- Flink, C. M. (2017). Rethinking Punctuated Equilibrium Theory: A Public Administration Approach to Budgetary Changes. Policy Studies Journal, 45(1), 101–120. https://doi.org/10.1111/psj.12114
- Flink, C. M., & Robinson, S. E. (2020). Corrective policy reactions: Positive and negative budgetary punctuations. Journal of Public Policy, 40(1), 96–115. https://doi.org/10.1017/S0143814X18000259
- Gist, J. R. (1974). Mandatory Expenditures and the Defense Sector: Theory of Budgetary Incrementalism. In R. B. Ripley (Ed.), A Sage Professional Paper (pp. 5–39). London: Sage.
- Goldstein, M., & Uchida, S. (2016). A comparative evaluation of unsupervised anomaly detection algorithms for multivariate data. PLoS ONE, 11(4), 1–31. https://doi.org/10.1371/journal.pone.0152173
- Gould, P. (1981). Letting the Data Speak for Themselves. Annals of the Association of American Geographers, 71(2), 166–176.
- Grubbs, F. E. (1969). Procedures for Detecting Outlying Observations in Samples. Technometrics, 11(1), 1–21. https://doi.org/10.1080/00401706.1969.10490657
- Hampel, F. R. (1971). A General Qualitative Definition of Robustness. The Annals of Mathematical Statistics, 42(6), 1887–1896.
- Hawkins, D. M. (1980). Identification of outliers. London: Chapman and Hall. https://doi.org/10.1007/978-94-015-3994-4
- Helman, P., & Bhangoo, J. (1997). A Statistically Based System for Prioritizing Information Exploration under Uncertainty. In Proceedings of the IEEE International Conference on Systems, Man, and Cybernetics (Vol. 27, pp. 449–466). IEEE Press. https://doi.org/10.1109/3468.594912
- Hodge, V., & Austin, J. (2004). A Survey of Outlier Detection Methodologies. Artificial Intelligence Review, 22(2), 85–126. https://doi.org/10.1023/B:AIRE.0000045502.10941.a9
- Jones, B. D., Baumgartner, F. R., Breunig, C., Wlezien, C., Soroka, S., Foucault, M., … John, P. (2009). A General Empirical Law of Public Budgets: A Comparative Analysis. American Journal of Political Science, 53(4), 855–73.
- Jones, B. D., Baumgartner, F. R., & True, J. L. (1998). Policy Punctuations: US Budget Authority, 1947–1995. Journal of Poliitics, 60(1), 1–33.
- Jones, B. D., Sulkin, T., & Larsen, H. A. (2003). Policy Punctuations in American Political Institutions. American Political Science Review, 97(1), 151–169.
- Jones, B. D., True, J. L., & Baumgartner, F. R. (1997). Does Incrementalism Stem from Political Consensus or from Institutional Gridlock? American Journal of Political Science, 41(4), 1319–1339.
- Jordan, A. A., Taylor, W. J., Meese, M. J., Nielsen, S. C., & Schlesinger, J. (2009). American National Security (6th ed.). Baltimore: Johns Hopkins University Press.
- Jordan, M. M. (2003). Punctuations and Agendas: A New Look at Local Government Budget Expenditures. Journal of Policy Analysis and Management, 22(3), 345–360. https://doi.org/10.1002/pam.10136
- Kamlet, M. S., & Mowery, D. C. (1987). Influences on Executive and Congressional Budgetary Priorities, 1955–1981. American Political Science Review, 81(1), 155–178. https://doi.org/DOI:10.2307/1960783
- Kanter, A. (1972). Congress and the Defense Budget: 1960–1970. American Political Science Review, 66(1), 129–143.
- Kemp, K. (1982). Instability in budgeting for federal regulatory agencies. Social Science Quarterly, 63(4), 643–660.
- Khan, S. S., & Madden, M. G. (2014). One-class classification: Taxonomy of study and review of techniques. The Knowledge Engineering Review, 29(3), 345–374. https://doi.org/10.1017/S026988891300043X
- Knorr, E. M., & Ng, R. T. (1998). Algorithms for Mining Distance-Based Outliers in Large Datasets. In Proceedings of the 24rd International Conference on Very Large Data Bases (pp. 392–403). San Francisco, CA, USA: Morgan Kaufmann Publishers Inc.
- Knorr, E. M., Ng, R. T., & Zamar, R. (2001). Robust Space Transformations for Distance-based Operations. In Proceedings of the 7th International Conference on Knowledge Discovery and Data Mining (KDD01) (pp. 126–135). https://doi.org/10.1145/502512.502532
- Laptev, N., Amizadeh, S., & Flint, I. (2015). Generic and Scalable Framework for Automated Time-Series Anomaly Detection. In Proceedings of the 21th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (pp. 1939–1947). New York, NY, USA: Association for Computing Machinery. https://doi.org/10.1145/2783258.2788611
- Laurikkala, J., Juhola, M., & Kentala, E. (2000). Informal identification of outliers in medical data. In N. Lavrač, S. Miksch, & B. Kavšek (Eds.), Fifth International Workshop on Intelligent Data Analysis in Medicine and Pharmacology IDAMAP-2000 Berlin, 22 August. Organized as a workshop of the 14th European Conference on Artificial Intelligence ECAI-2000. https://doi.org/10.1142/s0217979205027834
- Leys, C., Ley, C., Klein, O., Bernard, P., & Licata, L. (2013). Detecting outliers: Do not use standard deviation around the mean, use absolute deviation around the median. Journal of Experimental Social Psychology, 49(4), 764–766. https://doi.org/10.1016/j.jesp.2013.03.013
- Lindblom, C. E. (1959). The Science of ‘Muddling Through’. Public Administration Review, 19(2), 79–88. https://doi.org/10.2307/973677
- Merriam-Webster Online Dictionary. (2019). Retrieved 14 November 2019, from https://www.merriam-webster.com/dictionary
- Miller, J. (1991). Short Report: Reaction Time Analysis with Outlier Exclusion: Bias Varies with Sample Size. The Quarterly Journal of Experimental Psychology Section A, 43(4), 907–912. https://doi.org/10.1080/14640749108400962
- Mueller, D. C. (2003). Public Choice III (3rd ed.). Cambridge: Cambridge University Press. https://doi.org/DOI:10.1017/CBO9780511813771
- Munir, M., Siddiqui, S. A., Dengel, A., & Ahmed, S. (2019). DeepAnT: A Deep Learning Approach for Unsupervised Anomaly Detection in Time Series. IEEE Access, 7, 1991–2005. https://doi.org/10.1109/ACCESS.2018.2886457
- Noguchi, Y. (1980). A Dynamic Model of Incremental Budgeting. Hitotsubashi Journal of Economics, 20, 11–25.
- Ordinance of the Minister of Finance (2014).
- Padgett, J. F. (1980). Bounded Rationality in Budgetary Research. American Political Science Review, 74(2), 354–372. https://doi.org/DOI:10.2307/1960632
- Papadimitriou, S., Kitagawa, H., Gibbons, P. B., & Faloutsos, C. (2002). LOCI: Fast Outlier Detection Using the Local Correlation Integral (No. CMU-CS-02-188). Pittsburgh, PA. https://doi.org/10.1184/R1/6607028.v1
- Public Finance Act (2009).
- Ramaswamy, S., Rastogi, R., & Shim, K. (2000). Efficient Algorithms for Mining Outliers from Large Data Sets. In Proceedings of the 2000 ACM SIGMOD International Conference on Management of Data (pp. 427–438). New York, NY, USA: Association for Computing Machinery. https://doi.org/10.1145/342009.335437
- Robinson, S. E., Caver, F., Meier, K. J., & O’Toole, L. J. (2007). Explaining policy punctuations: Bureaucratization and budget change. American Journal of Political Science, 51(1), 140–150. https://doi.org/10.1111/j.1540-5907.2007.00242.x
- Robinson, S. E., Flink, C. M., & King, C. M. (2014). Organizational History and Budgetary Punctuation. Journal of Public Administration Research and Theory, 24(2), 459–471. https://doi.org/10.1093/jopart/mut035
- Rousseeuw, P. J., & Hubert, M. (2018). Anomaly detection by robust statistics. Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery, 8(2), 1–14. https://doi.org/10.1002/widm.1236
- Schubert, E., Wojdanowski, R., Zimek, A., & Kriegel, H. P. (2012). On evaluation of outlier rankings and outlier scores. In Proceedings of the 12th SIAM International Conference on Data Mining, SDM 2012 (pp. 1047–1058). https://doi.org/10.1137/1.9781611972825.90
- Sebők, M., & Berki, T. (2017). Incrementalism and punctuated equilibrium in Hungarian budgeting (1991–2013). Journal of Public Budgeting, Accounting and Financial Management, 29(2), 151–181. https://doi.org/10.1108/jpbafm-29-02-2017-b001
- Shewhart, W. A. (1923). Economic Control of Quality of Manufactured Product. London: D.van Nostrand Company.
- Simon, H. A. (1955). A Behavioral Model of Rational Choice. The Quarterly Journal of Economics, 69(1), 99–118. https://doi.org/10.2307/1884852
- Sims, C. A. (1980). Macroeconomics and Reality. Econometrica, 48(1), 1–48.
- True, J. L., Jones, B. D., & Baumgartner, F. R. (1999). Punctuated-equilibrium theory: explaining stability and change in American policymaking. In P. A. Sabatier (Ed.), Theories of the policy process. Boulder, CO: Westview Press.
- True, J. L., Jones, B. D., & Baumgartner, F. R. (2007). Punctuated-Equilibrium Theory: Explaining Stability and Change in Public Policymaking. In P. A. Sabatier (Ed.), Theories of the Policy Process (pp. 155–88). Boulder, CO: Westview Press.
- Tukey, J. (1977). Exploratory Data Analysis. Reading, MA: Addison-Wesley.
- Wanat, J. (1974). Bases of Budgetary Incrementalism. American Political Science Review, 68(3), 1221–1228.
- Wildavsky, A. (1964). The politics of the budgetary process. Boston: Little, Brown.
- Xu, X., Liu, H., & Yao, M. (2019). Recent Progress of Anomaly Detection. Complexity, 1–11. https://doi.org/10.1155/2019/2686378
- Yamanishi, K., Takeuchi, J., Williams, G., & Milne, P. (2004). On-Line Unsupervised Outlier Detection Using Finite Mixtures with Discounting Learning Algorithms. Data Mining and Knowledge Discovery, 8(3), 275–300. https://doi.org//10.1023/B:DAMI.0000023676.72185.7c
- Zimek, A., & Filzmoser, P. (2018). There and back again: Outlier detection between statistical reasoning and data mining algorithms. Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery, 8(6). https://doi.org/10.1002/widm.1280