Have a personal or library account? Click to login
Between incrementalism and punctuated equilibrium: the case of budget in Poland, 1995–2018 Cover

Between incrementalism and punctuated equilibrium: the case of budget in Poland, 1995–2018

Open Access
|Sep 2021

References

  1. Agyemang, M., Barker, K., & Alhajj, R. (2006). A comprehensive survey of numeric and symbolic outlier mining techniques. Intelligent Data Analysis, 10(6), 521–538. https://doi.org/10.3233/IDA-2006-10604
  2. Amer, M., & Goldstein, M. (2012). Nearest-Neighbor and Clustering based Anomaly Detection Algorithms for RapidMiner. In 3rd RapidMiner Community Meeting and Conferernce. https://doi.org/10.5455/ijavms.141
  3. Bailey, J. J., & O’Connor, R. J. (1975). Operationalizing Incrementalism: Measuring the Muddles. Public Administration Review, 35(1), 60–66. https://doi.org/10.2307/975202
  4. Barnett, V., & Lewis, T. (1994). Outliers in Statistical Data (3rd Ed.). Wiley.
  5. Bartolucci, A. A. (2016). Methodologies in Outlier Analysis. In A. A. Bartolucci, K. P. Singh, & S. Bae (Eds.), Introduction to Statistical Analysis of Laboratory Data (pp. 79–111). John Wiley & Sons.
  6. Baumgartner, F. R., & Epp, D. A. (2013). Explaining Punctuations (Paper presented at the annual meetings of the Comparative Agendas Project, Antwerp, Belgium, June 27–29, 2013). Retrieved from https://unc.live/3afbnxB
  7. Baumgartner, F. R., Green-Pedersen, C., & Jones, B. D. (2006). Comparative studies of policy agendas. Journal of European Public Policy, 13(7), 959–974.
  8. Baumgartner, F. R., & Jones, B. D. (Eds.). (2002). Policy dynamics. Chicago: University of Chicago Press.
  9. Bozeman, B. (1977). The Effect of Economic and Partisan Change On Federal Appropriations. Western Political Quarterly, 30(1), 112–124. https://doi.org/10.1177/106591297703000111
  10. Breunig, C. (2006). The more things change, the more things stay the same: a comparative analysis of budget punctuations. Journal of European Public Policy, 13(7), 1069–1085. https://doi.org/10.1080/13501760600924167
  11. Breunig, C., & Jones, B. D. (2011). Stochastic Process Methods with an Application to Budgetary Data. Political Analysis, 19(1), 103–17.
  12. Breunig, C., & Koski, C. (2006). Punctuated Equilibria and Budgets in the American States. Policy Studies Journal, 34(3), 363–379. https://doi.org/10.1111/j.1541-0072.2006.00177.x
  13. Breunig, M., Kriegel, H.-P., Ng, R., & Sander, J. (2000). LOF: Identifying Density-Based Local Outliers. In ACM Sigmod Record (Vol. 29, pp. 93–104). Dallas, TX. https://doi.org/10.1145/342009.335388
  14. Bunce, V., & Echols, J. M. (1978). Power and Policy in Communist Systems: The Problem of ‘Incrementalism’. The Journal of Politics, 40(4), 911–932. https://doi.org/10.2307/2129902
  15. Chandola, V., Banerjee, A., & Kumar, V. (2009). Anomaly Detection: A Survey. ACM Computing Surveys, 41(3), 1–58. https://doi.org/10.1145/1541880.1541882
  16. Cox, J., Hager, G., & Lowery, D. (1993). Regime Change in Presidential and Congressional Budgeting: Role Discontinuity or Role Evolution? American Journal of Political Science, 37(1), 88–118. https://doi.org/10.2307/2111525
  17. Davis, O. A., Dempster, M. A. H., & Wildavsky, A. (1974). Towards A Predictive Theory of Government Expenditure: US Domestic Appropriations. British Journal of Political Science, 4(4), 419–452. https://doi.org/DOI:10.1017/S0007123400009650
  18. de Crombrugghe, A., & Lipton, D. (1994). The Government Budget and the Economic Transformation of Poland. In O. Blanchard, K. Froot, & J. Sachs (Eds.), Transition in Eastern Europe (Vol. 2, pp. 111–136). Chicago, Illinois: University of Chicago Press.
  19. Dempster, M., & Wildavsky, A. (1979). On Change: Or, There is No Magic Size for An Increment. Political Studies, 27(3), 371–389. https://doi.org/10.1111/j.1467-9248.1979.tb01210.x
  20. Denning, D. (1986). An Intrusion-Detection Model. In IEEE Transactions on Software Engineering (Vol. 13, pp. 118–133). IEEE. https://doi.org/10.1109/SP.1986.10010
  21. Dezhbakhsh, H., Tohamy, S. M., & Aranson, P. H. (2003). A new approach for testing budgetary incrementalism. Journal of Politics, 65(2), 532–558. https://doi.org/10.1111/1468-2508.t01-3-00014
  22. Endler, D. (1998). Intrusion detection. Applying machine learning to Solaris audit data. In Proceedings 14th Annual Computer Security Applications Conference (pp. 268–279). Phoenix, AZ. https://doi.org/10.1109/CSAC.1998.738647
  23. Fenno, R. F. (1966). The Power of the Purse. Boston: Little Brown.
  24. Flink, C. M. (2017). Rethinking Punctuated Equilibrium Theory: A Public Administration Approach to Budgetary Changes. Policy Studies Journal, 45(1), 101–120. https://doi.org/10.1111/psj.12114
  25. Flink, C. M., & Robinson, S. E. (2020). Corrective policy reactions: Positive and negative budgetary punctuations. Journal of Public Policy, 40(1), 96–115. https://doi.org/10.1017/S0143814X18000259
  26. Gist, J. R. (1974). Mandatory Expenditures and the Defense Sector: Theory of Budgetary Incrementalism. In R. B. Ripley (Ed.), A Sage Professional Paper (pp. 5–39). London: Sage.
  27. Goldstein, M., & Uchida, S. (2016). A comparative evaluation of unsupervised anomaly detection algorithms for multivariate data. PLoS ONE, 11(4), 1–31. https://doi.org/10.1371/journal.pone.0152173
  28. Gould, P. (1981). Letting the Data Speak for Themselves. Annals of the Association of American Geographers, 71(2), 166–176.
  29. Grubbs, F. E. (1969). Procedures for Detecting Outlying Observations in Samples. Technometrics, 11(1), 1–21. https://doi.org/10.1080/00401706.1969.10490657
  30. Hampel, F. R. (1971). A General Qualitative Definition of Robustness. The Annals of Mathematical Statistics, 42(6), 1887–1896.
  31. Hawkins, D. M. (1980). Identification of outliers. London: Chapman and Hall. https://doi.org/10.1007/978-94-015-3994-4
  32. Helman, P., & Bhangoo, J. (1997). A Statistically Based System for Prioritizing Information Exploration under Uncertainty. In Proceedings of the IEEE International Conference on Systems, Man, and Cybernetics (Vol. 27, pp. 449–466). IEEE Press. https://doi.org/10.1109/3468.594912
  33. Hodge, V., & Austin, J. (2004). A Survey of Outlier Detection Methodologies. Artificial Intelligence Review, 22(2), 85–126. https://doi.org/10.1023/B:AIRE.0000045502.10941.a9
  34. Jones, B. D., Baumgartner, F. R., Breunig, C., Wlezien, C., Soroka, S., Foucault, M., … John, P. (2009). A General Empirical Law of Public Budgets: A Comparative Analysis. American Journal of Political Science, 53(4), 855–73.
  35. Jones, B. D., Baumgartner, F. R., & True, J. L. (1998). Policy Punctuations: US Budget Authority, 1947–1995. Journal of Poliitics, 60(1), 1–33.
  36. Jones, B. D., Sulkin, T., & Larsen, H. A. (2003). Policy Punctuations in American Political Institutions. American Political Science Review, 97(1), 151–169.
  37. Jones, B. D., True, J. L., & Baumgartner, F. R. (1997). Does Incrementalism Stem from Political Consensus or from Institutional Gridlock? American Journal of Political Science, 41(4), 1319–1339.
  38. Jordan, A. A., Taylor, W. J., Meese, M. J., Nielsen, S. C., & Schlesinger, J. (2009). American National Security (6th ed.). Baltimore: Johns Hopkins University Press.
  39. Jordan, M. M. (2003). Punctuations and Agendas: A New Look at Local Government Budget Expenditures. Journal of Policy Analysis and Management, 22(3), 345–360. https://doi.org/10.1002/pam.10136
  40. Kamlet, M. S., & Mowery, D. C. (1987). Influences on Executive and Congressional Budgetary Priorities, 1955–1981. American Political Science Review, 81(1), 155–178. https://doi.org/DOI:10.2307/1960783
  41. Kanter, A. (1972). Congress and the Defense Budget: 1960–1970. American Political Science Review, 66(1), 129–143.
  42. Kemp, K. (1982). Instability in budgeting for federal regulatory agencies. Social Science Quarterly, 63(4), 643–660.
  43. Khan, S. S., & Madden, M. G. (2014). One-class classification: Taxonomy of study and review of techniques. The Knowledge Engineering Review, 29(3), 345–374. https://doi.org/10.1017/S026988891300043X
  44. Knorr, E. M., & Ng, R. T. (1998). Algorithms for Mining Distance-Based Outliers in Large Datasets. In Proceedings of the 24rd International Conference on Very Large Data Bases (pp. 392–403). San Francisco, CA, USA: Morgan Kaufmann Publishers Inc.
  45. Knorr, E. M., Ng, R. T., & Zamar, R. (2001). Robust Space Transformations for Distance-based Operations. In Proceedings of the 7th International Conference on Knowledge Discovery and Data Mining (KDD01) (pp. 126–135). https://doi.org/10.1145/502512.502532
  46. Laptev, N., Amizadeh, S., & Flint, I. (2015). Generic and Scalable Framework for Automated Time-Series Anomaly Detection. In Proceedings of the 21th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (pp. 1939–1947). New York, NY, USA: Association for Computing Machinery. https://doi.org/10.1145/2783258.2788611
  47. Laurikkala, J., Juhola, M., & Kentala, E. (2000). Informal identification of outliers in medical data. In N. Lavrač, S. Miksch, & B. Kavšek (Eds.), Fifth International Workshop on Intelligent Data Analysis in Medicine and Pharmacology IDAMAP-2000 Berlin, 22 August. Organized as a workshop of the 14th European Conference on Artificial Intelligence ECAI-2000. https://doi.org/10.1142/s0217979205027834
  48. Leys, C., Ley, C., Klein, O., Bernard, P., & Licata, L. (2013). Detecting outliers: Do not use standard deviation around the mean, use absolute deviation around the median. Journal of Experimental Social Psychology, 49(4), 764–766. https://doi.org/10.1016/j.jesp.2013.03.013
  49. Lindblom, C. E. (1959). The Science of ‘Muddling Through’. Public Administration Review, 19(2), 79–88. https://doi.org/10.2307/973677
  50. Merriam-Webster Online Dictionary. (2019). Retrieved 14 November 2019, from https://www.merriam-webster.com/dictionary
  51. Miller, J. (1991). Short Report: Reaction Time Analysis with Outlier Exclusion: Bias Varies with Sample Size. The Quarterly Journal of Experimental Psychology Section A, 43(4), 907–912. https://doi.org/10.1080/14640749108400962
  52. Mueller, D. C. (2003). Public Choice III (3rd ed.). Cambridge: Cambridge University Press. https://doi.org/DOI:10.1017/CBO9780511813771
  53. Munir, M., Siddiqui, S. A., Dengel, A., & Ahmed, S. (2019). DeepAnT: A Deep Learning Approach for Unsupervised Anomaly Detection in Time Series. IEEE Access, 7, 1991–2005. https://doi.org/10.1109/ACCESS.2018.2886457
  54. Noguchi, Y. (1980). A Dynamic Model of Incremental Budgeting. Hitotsubashi Journal of Economics, 20, 11–25.
  55. Ordinance of the Minister of Finance (2014).
  56. Padgett, J. F. (1980). Bounded Rationality in Budgetary Research. American Political Science Review, 74(2), 354–372. https://doi.org/DOI:10.2307/1960632
  57. Papadimitriou, S., Kitagawa, H., Gibbons, P. B., & Faloutsos, C. (2002). LOCI: Fast Outlier Detection Using the Local Correlation Integral (No. CMU-CS-02-188). Pittsburgh, PA. https://doi.org/10.1184/R1/6607028.v1
  58. Public Finance Act (2009).
  59. Ramaswamy, S., Rastogi, R., & Shim, K. (2000). Efficient Algorithms for Mining Outliers from Large Data Sets. In Proceedings of the 2000 ACM SIGMOD International Conference on Management of Data (pp. 427–438). New York, NY, USA: Association for Computing Machinery. https://doi.org/10.1145/342009.335437
  60. Robinson, S. E., Caver, F., Meier, K. J., & O’Toole, L. J. (2007). Explaining policy punctuations: Bureaucratization and budget change. American Journal of Political Science, 51(1), 140–150. https://doi.org/10.1111/j.1540-5907.2007.00242.x
  61. Robinson, S. E., Flink, C. M., & King, C. M. (2014). Organizational History and Budgetary Punctuation. Journal of Public Administration Research and Theory, 24(2), 459–471. https://doi.org/10.1093/jopart/mut035
  62. Rousseeuw, P. J., & Hubert, M. (2018). Anomaly detection by robust statistics. Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery, 8(2), 1–14. https://doi.org/10.1002/widm.1236
  63. Schubert, E., Wojdanowski, R., Zimek, A., & Kriegel, H. P. (2012). On evaluation of outlier rankings and outlier scores. In Proceedings of the 12th SIAM International Conference on Data Mining, SDM 2012 (pp. 1047–1058). https://doi.org/10.1137/1.9781611972825.90
  64. Sebők, M., & Berki, T. (2017). Incrementalism and punctuated equilibrium in Hungarian budgeting (1991–2013). Journal of Public Budgeting, Accounting and Financial Management, 29(2), 151–181. https://doi.org/10.1108/jpbafm-29-02-2017-b001
  65. Shewhart, W. A. (1923). Economic Control of Quality of Manufactured Product. London: D.van Nostrand Company.
  66. Simon, H. A. (1955). A Behavioral Model of Rational Choice. The Quarterly Journal of Economics, 69(1), 99–118. https://doi.org/10.2307/1884852
  67. Sims, C. A. (1980). Macroeconomics and Reality. Econometrica, 48(1), 1–48.
  68. True, J. L., Jones, B. D., & Baumgartner, F. R. (1999). Punctuated-equilibrium theory: explaining stability and change in American policymaking. In P. A. Sabatier (Ed.), Theories of the policy process. Boulder, CO: Westview Press.
  69. True, J. L., Jones, B. D., & Baumgartner, F. R. (2007). Punctuated-Equilibrium Theory: Explaining Stability and Change in Public Policymaking. In P. A. Sabatier (Ed.), Theories of the Policy Process (pp. 155–88). Boulder, CO: Westview Press.
  70. Tukey, J. (1977). Exploratory Data Analysis. Reading, MA: Addison-Wesley.
  71. Wanat, J. (1974). Bases of Budgetary Incrementalism. American Political Science Review, 68(3), 1221–1228.
  72. Wildavsky, A. (1964). The politics of the budgetary process. Boston: Little, Brown.
  73. Xu, X., Liu, H., & Yao, M. (2019). Recent Progress of Anomaly Detection. Complexity, 1–11. https://doi.org/10.1155/2019/2686378
  74. Yamanishi, K., Takeuchi, J., Williams, G., & Milne, P. (2004). On-Line Unsupervised Outlier Detection Using Finite Mixtures with Discounting Learning Algorithms. Data Mining and Knowledge Discovery, 8(3), 275–300. https://doi.org//10.1023/B:DAMI.0000023676.72185.7c
  75. Zimek, A., & Filzmoser, P. (2018). There and back again: Outlier detection between statistical reasoning and data mining algorithms. Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery, 8(6). https://doi.org/10.1002/widm.1280
Language: English
Page range: 14 - 30
Submitted on: May 5, 2020
Accepted on: Jan 23, 2021
Published on: Sep 2, 2021
Published by: University of Matej Bel in Banska Bystrica, Faculty of Economics
In partnership with: Paradigm Publishing Services
Publication frequency: 2 issues per year

© 2021 Lukasz Wordliczek, published by University of Matej Bel in Banska Bystrica, Faculty of Economics
This work is licensed under the Creative Commons Attribution 4.0 License.