Have a personal or library account? Click to login
Impact of Different Economic Areas on Yield Rates in the V4’s Capitals’ Office Markets Cover

Impact of Different Economic Areas on Yield Rates in the V4’s Capitals’ Office Markets

Open Access
|Oct 2025

Figures & Tables

Figure 1.

The yield rates (left axis) and total office stock (right axis, in M/Sqm.) on the office markets in Bratislava, Budapest, Prague and Warsaw, Q1 2011 to Q4 2022.
Source: own elaboration on data provided by Colliers International Polska
The yield rates (left axis) and total office stock (right axis, in M/Sqm.) on the office markets in Bratislava, Budapest, Prague and Warsaw, Q1 2011 to Q4 2022. Source: own elaboration on data provided by Colliers International Polska

Figure 2.

The cumulative effects of explanatory variables on yield rate in the office market in Bratislava
Source: own elaboration
The cumulative effects of explanatory variables on yield rate in the office market in Bratislava Source: own elaboration

The final ARDL models explaining the yield rate on each of the office markets_

BRATISLAVA – The V4 datasetBUDAPEST – The EMU datasetPRAGUE – The National datasetWARSAW – The USA dataset
Independent variablesCoefficientStd. Err.Independent variablesCoefficientStd. Err.Independent variablesCoefficientStd. Err.Independent variablesCoefficientStd. Err.
Intercept−0.0009***0.0003Adjustment variableIntercept0.00010.0005Intercept−0.00020.0002
DBRYL10.18240.1775BUYL1−0.1949***0.0362DPRYL10.5501***0.1713DWAYL10.22890.1621
DB10V4−0.01820.1103Long-run variablesDB10C−0.04980.0598DWAYL20.3239*0.1811
DB10V4L1−0.2948**0.1003B10E0.8843***0.1105DB10CL10.05580.0524DB10U−0.05520.0761
DB10V4L2−0.11170.0814HICPE−0.5047***0.1480DB10CL20.1241**0.0535DB10UL10.1674**0.0749
DB10V4L30.2436**0.0872GDPE0.00040.0004DB10CL3−0.1933***0.0591DHICPU−0.0306*0.0172
DB10V4L4−0.2822**0.0993BURGR−0.3462***0.0919DM3C0.03050.0284DHICPUL1−0.0617***0.0173
DHICPV4−0.06930.0679Short-run variablesDM3CL1−0.0501*0.0269DPLNUSD0.00120.0013
DHICPV4L10.2485***0.0747DBUYL1−0.3789***0.1323DHICPC−0.0518**0.0189DPLNUSDL10.00010.0014
DHICPV4L20.1277*0.0645DBUYL2−0.14050.1457DHICPCL10.01550.0236DPLNUSDL2−0.00120.0015
DHICPV4L30.2561***0.0803DBUYL3−0.3115*0.1582DHICPCL20.0534**0.0248DPLNUSDL30.0034**0.0014
DHICPV4L40.2384***0.0585DHICPE0.0763**0.0363DHICPCL30.02960.0275DGDPU0.0009***0.0002
DCETOPI−0.0218***0.0041DBURGR0.0212*0.0124DHICPCL40.0849***0.0272DWAVSNA7.80e-06**3.07e-06
DCETOPIL10.00530.0039DBURGRL10.0223**0.0094DGDPC0.0001**0.0001DWAVSNAL1−3.50e-062.87e-06
DCETOPIL2−0.00160.0030Intercept0.0098***0.0021DPRVSNA2.44e-06*1.23e-06DWAVSNAL20.00001***2.80e-06
DCETOPIL30.00230.0031---DPRRGR−0.00910.0119DWARGR0.00890.0079
DCETOPIL4−0.00380.0025---DPRRGRL10.0249*0.0131DWARGRL10.00440.0088
DGDPV40.0007***0.0002------DWARGRL20.0552***0.0127
DGDPV4L10.0006**0.0002------DWARGRL3−0.0488***0.0142
DGDPV4L20.0005**0.0002------DWARGRL40.0274***0.0093
DGDPV4L30.00020.0001---------
DBRVSNA−0.00010.0001---------
DBRVSNAL1−0.00010.0001---------
DBRVSNAL20.0003***0.0001---------
DBRVSNAL30.0003***0.0001---------
DBRVSNAL4−0.00010.0001---------
DBRRGR−0.0195*0.0096---------
DBRRGRL1−0.01820.0134---------
DBRRGRL2−0.0315**0.0141---------
DBRRGRL3−0.0512***0.0129---------
DBRRGRL4−0.0500***0.0104---------
Adj. R20.7098Adj. R20.5008Adj. R20.6708Adj. R20.5002

Descriptive statistics of time series employed in the final models

Time seriesYield rateYield rateYield rateYield rateGovernment Bonds (10-yr)Government Bonds (10-yr)Government Bonds (10-yr)Government Bonds (10-yr)M3 aggregateHICP inflationHICP inflationHICP inflation
Variable codeBRYBUYPRYWAYB10CB10V4B10EB10UM3CHICPCHICPV4HICPE
AreaBratislavaBudapestPragueWarsawCzechiaVisegrad groupEMUUSACzechiaCzechiaVisegrad groupEMU
Unit%%%%%%%%Points (2015 = 100)Rate of changeRate of changeRate of change
Min.0.0500.0500.0400.0440.00250.0096−0.00090.006579.60−0.0079−0.0079−0.0069
Max.0.0750.0780.0680.0650.05380.06300.04490.0383175.460.07970.05340.0363
Mean0.0660.0650.0530.0540.02000.02930.01690.0218120.390.00820.00870.0050
S.D.0.0080.0100.0090.0070.01270.01540.01270.006829.730.01440.01260.0075
Time seriesHICP inflationStock indexStock indexGDPGDPGDPGDPExchange rateExchange rateVacant stock/Net Absorption*Vacant stock/Net Absorption*Vacant stock/Net Absorption*
Variable codeHICPUCETOPISNPIGDPCGDPV4GDPEGDPUPLNUSDUSDEURBRVSNAPRVSNAWAVSNA
AreaUSACentral EuropeUSACzechiaVisegrad groupEUUSAPoland/USAUSA/EMUBratislavaPragueWarsaw
UnitRate of changePointsPointsGrowth rateGrowth rateGrowth rateGrowth ratePLNUSDSqm.Sqm.Sqm.
Min.−0.01991,478.331,131.42−8.736−9.956−11.395−7.8912.7520.9781.813−622.36−83.70
Max.0.03742,515.034,766.187.3768.87512.1407.7594.9531.45218.607185.28523.58
Mean0.00581,926.662,511.140.4770.6410.2930.5733.6601.1947.756−1.8515.34
S.D.0.0119241.73945.581.8722.0412.5071.6850.4400.1103.94696.9278.20
Time seriesRent growth rateRent growth rateRent growth rateRent growth rate--------
Variable codeBRRGRBURGRPRRGRWARGR--------
AreaBratislavaBudapestPragueWarsaw--------
UnitGrowth rateGrowth rateGrowth rateGrowth rate--------
Min.−0.070−0.100−0.035−0.042--------
Max.0.0650.0560.0670.136--------
Mean0.0030.0030.0060.002--------
S.D.0.0230.0230.0180.028--------

Answers to the first two research questions

Research questionBRATISLAVABUDAPESTPRAGUEWARSAW
Which of the following economic areas’ sets of variables — i.e. the National, the V4, the EMU, or the USA — best explain fluctuations in the yield rates for the four office markets?The V4The EMUThe NationalThe USA
Which variables representing the consecutive groups of factors — i.e. monetary influence, capital market factors, economic situation, or local market factors — have a dominant impact on the yield rates?The monetary factor – changes in the inflation rate (DHICPV4)Long-term impact: The capital market factor – interest of government bonds (B10E); Short-term impact: The monetary factor – changes in the inflation rate (DHICPE)The monetary factor – changes in the inflation rate (DHICPC)The capital market factor – changes in interest from government bonds (DB10UL1)

Results of the White and the Breusch-Pagan heteroscedasticity tests on the final ARDL models

The White test for heteroscedasticity
BRATISLAVABUDAPESTPRAGUEWARSAW
chi2(41)Prob > chi2chi2(42)Prob > chi2chi2(41)Prob > chi2chi2(41)Prob > chi2
42.000.4274*43.000.4282*42.000.4274*42.000.4274*
The Breusch-Pagan test for heteroscedasticity
BRATISLAVABUDAPESTPRAGUEWARSAW
F(30, 11)Prob > FF(11, 31)Prob > FF(16, 25)Prob > FF(19, 22)Prob > F
1.590.2112*0.390.9509*0.750.7238*0.670.8083*

The final NARDL model explaining the yield rate on the office market in Bratislava with the USA dataset

BRATISLAVA – The USA dataset
Independent variablesCoefficientStd. Err.
Constant0.1399**0.0331
BRYL1−1.7601**0.4249
HICPUL1+−0.4858*0.1881
HICPUL1−0.03640.1276
USDEUR+0.2266**0.0749
USDEUR−0.01140.0199
SNPIL1+−0.0923***0.0166
SNPIL1−0.01330.0136
GDPUL1+−0.00140.0016
GDPUL1−0.0045*0.0020
BRVSNAL1+0.0021**0.0007
BRVSNAL10.0008*0.0003
BRRGRL1+−0.2651*0.1008
BRRGRL1−0.03680.0485
ΔBRYL10.65580.3742
ΔBRYL2−0.29810.1903
ΔHICPU+−0.2202*0.0833
ΔHICPUL1+0.17380.1169
ΔHICPU−0.06770.0795
ΔHICPUL1−0.0044***0.0713
ΔUSDEUR+0.0980*0.0387
ΔUSDEURL1+−0.09320.0541
ΔUSDEUR−0.04050.0272
ΔUSDEURL1−0.0375*0.0151
ΔSNPI+−0.0599**0.0172
ΔSNPIL1+−0.01600.0182
ΔSNPI0.00130.0124
ΔSNPIL10.02010.0171
ΔGDPU+−0.00020.0009
ΔGDPUL1+0.00070.0008
ΔGDPU−0.00070.0004
ΔGDPUL10.0020**0.0006
ΔBRVSNA+0.0010**0.0004
ΔBRVSNAL1+−0.00040.0003
ΔBRVSNA0.000010.0004
ΔBRVSNAL1−0.0005*0.0002
ΔBRRGR+−0.1524*0.0602
ΔBRRGRL1+0.02960.0265
ΔBRRGR0.03430.0280
ΔBRRGRL10.02760.0235
Adj. R20.6686
TestsStat.p-value
Portmanteau test (chi2)19.06*0.5178
Breusch-Pagan test (chi2)0.4469*0.5038
Ramsey RESET test (F)47.98*0.1056
Jarque-Bera test (chi2)1.426*0.4901
Bounds cointegration test
p levels of critical values10%5%1%
Lower and upper bounds^I(0)I(1)I(0)I(1)I(0)I(1)
F-statistics3.5008*2.123.232.453.613.154.43
t-statistics−4.1429*−2.57−4.04−2.86−4.38−3.43−4.99

Results of the Jarque-Bera and the Shapiro-Wilk normality tests for residuals of the final ARDL models

The Jarque-Bera normality test
BRATISLAVABUDAPESTPRAGUEWARSAW
Chi(2)Prob > chi2Chi(2)Prob > chi2Chi(2)Prob > chi2Chi(2)Prob > chi2
1.0240.5994*1.5870.4523*1.7750.4117*3.1040.2118*
The Shapiro-Wilk normality test
BRATISLAVABUDAPESTPRAGUEWARSAW
zProb > zzProb > zzProb > zzProb > z
0.8310.20287*0.6660.25276*0.7500.22665*0.9870.16187*

Results of the Bounds cointegration test (Case 3)

BRATISLAVA – the V4 dataset
p levels of critical values10%5%1%
Lower and upper boundsI(0)I(1)I(0)I(1)I(0)I(1)
F-statistics2.3642.2843.7282.7604.4123.9146.059
t-statistics−0.491−2.427−3.896−2.805−4.358−3.575−5.304
BUDAPEST – the EMU dataset
p levels of critical values10%5%1%
Lower and upper boundsI(0)I(1)I(0)I(1)I(0)I(1)
F-statistics9.379***2.5983.8833.1504.6064.4616.308
t-statistics−5.382***−2.508−3.619−2.864−4.032−3.587−4.866
PRAGUE – the NATIONAL dataset
p levels of critical values10%5%1%
Lower and upper boundsI(0)I(1)I(0)I(1)I(0)I(1)
F-statistics7.6062.3283.6582.7944.2993.9105.821
t-statistics−1.813−2.493−3.973−2.854−4.413−3.591−5.306
WARSAW – the USA dataset
p levels of critical values10%5%1%
Lower and upper boundsI(0)I(1)I(0)I(1)I(0)I(1)
F-statistics6.2832.2913.7172.7654.3933.9136.020
t-statistics−0.519−2.438−3.909−2.813−4.367−3.578−5.304

The independent variables in ARDL and NARDL models

Types of variables according to the Gordon growth modelVariables characteristicsEconomic areas’ sets of variables
The NationalThe V4The EMUThe USA
Risk-free interest ratesGovernment bonds interest (10-yr)SK, HU, CZ, PLAverage in V4 countriesEMUUSA
Monetary (risk premium)M3 monetary aggregateEMU, HU, CZ, PL-EMUUSA
HICP inflation rateSK, HU, CZ, PLAverage in V4 countriesEMUUSA
Exchange rates--National currency/EURNational currency/USD
Alternative investments (risk premium)Stock indicesSAX, BUX, PX, WIG20CETOPDAXS&P 500
Country specific (risk premium)GDP growth rate qoqSK, HU, CZ, PLAverage in V4 countriesEMUUSA
Office market characteristics (risk premium)Vacancy/net absorption*Bratislava, Budapest, Prague, WarsawBratislava, Budapest, Prague, WarsawBratislava, Budapest, Prague, WarsawBratislava, Budapest, Prague, Warsaw
Cash flow growthRent growth rate

Results of long-run and short-run asymmetry, long-run positive and negative effects, and the Wald test

Independent variablesLong-run asymmetryShort-run asymmetryWald test long-run asymmetryWald test short-run asymmetry
F-statF-statF-statF-stat
HICPU4.746*0.01123.990.01
USDEUR11.12**2.2717.02*2.27
SNPI35.51***8.562**16.12**8.56**
GDPU89.53***1.21518.36**1.22
BRVSNA7.605*2.9037.42*2.90
BRRGR11.24**10.26**6.01*10.26**
Long-run asymmetry positive and negative effects
Independent variablesLong-run effect+Long-run effect
CoefficientF-statCoefficientF-stat
HICPU−0.276**11.650.0210.0838
USDEUR0.129**17.640.0060.3333
SNPI−0.052***34.370.0080.8072
GDPU−0.0010.79350.003*6.595
BRVSNA0.001**13.4−0.000**8.726
BRRGR−0.151**10.660.0210.5401

Results of the Breusch-Godfrey autocorrelation test on the final ARDL models

Number of lagsBRATISLAVABUDAPESTPRAGUEWARSAW
chi2Prob > chi2chi2Prob > chi2chi2Prob > chi2chi2Prob > chi2
10.0970.7557*0.3170.5733*0.4410.5067*0.8450.3581*
20.3890.8233*0.3210.8516*0.6910.7077*1.8400.3985*
31.6930.6386*0.4090.9384*2.4600.4825*2.9430.4004*
41.8360.7658*1.2940.8624*2.5620.6335*5.4810.2414*

Results of the ADF stationarity test of time series employed in the final ARDL and NARDL models

BRATISLAVA – the V4 dataset (ARDL)
VariableBRYB10V4HICPV4CETOPIGDPV4BRVSNABRRGR
LevelsTest statistic−0.864−2.281−2.486−3.246**−5.985***−2.417−4.611***
First differencesTest statistic−5.010***−2.848*−7.630***−5.566***-−6.661***-
BUDAPEST – the EMU dataset (ARDL)
VariableBUYB10EHICPEGDPEBURGR--
LevelsTest statistic−1.141−2.078−2.664*−6.690***−3.588**--
First differencesTest statistic−3.131**−3.683***−6.960***-−6.284***--
PRAGUE – the NATIONAL dataset (ARDL)
VariablePRYB10CM3CHICPCGDPCPRVSNAPRRGR
LevelsTest statistic−1.481−0.8970.360−3.926−5.883***−4.564***−1.996
First differencesTest statistic−2.988**−3.565**−4.499***−6.677***--−7.200***
WARSAW – the USA dataset (ARDL)
VariableWAYB10UHICPUPLNUSDGDPUWAVSNAWARGR
LevelsTest statistic−1.018−2.165−4.566***−1.096−6.499***−4.524***−3.513
First differencesTest statistic−2.524**−3.285**-−5.656***--−6.799***
BRATISLAVA – the USA dataset (NARDL)
VariableBRYHICPUUSDEURSNPIGDPUBRVSNABRRGR
LevelsTest statistic−4.566***−4.566***−1.864−1.631−6.499***−2.417−4.611***
First differencesTest statistic--−4.358***−5.273***-−6.661***-
DOI: https://doi.org/10.2478/ceej-2025-0016 | Journal eISSN: 2543-6821 | Journal ISSN: 2544-9001
Language: English
Page range: 260 - 283
Submitted on: May 25, 2025
Accepted on: Sep 15, 2025
Published on: Oct 31, 2025
Published by: Faculty of Economic Sciences, University of Warsaw
In partnership with: Paradigm Publishing Services
Publication frequency: 1 issue per year

© 2025 Krzysztof Adam Nowak, published by Faculty of Economic Sciences, University of Warsaw
This work is licensed under the Creative Commons Attribution 4.0 License.