Have a personal or library account? Click to login

Impact of Different Economic Areas on Yield Rates in the V4’s Capitals’ Office Markets

Open Access
|Oct 2025

Figures & Tables

Figure 1.

The yield rates (left axis) and total office stock (right axis, in M/Sqm.) on the office markets in Bratislava, Budapest, Prague and Warsaw, Q1 2011 to Q4 2022.
Source: own elaboration on data provided by Colliers International Polska
The yield rates (left axis) and total office stock (right axis, in M/Sqm.) on the office markets in Bratislava, Budapest, Prague and Warsaw, Q1 2011 to Q4 2022. Source: own elaboration on data provided by Colliers International Polska

Figure 2.

The cumulative effects of explanatory variables on yield rate in the office market in Bratislava
Source: own elaboration
The cumulative effects of explanatory variables on yield rate in the office market in Bratislava Source: own elaboration

The final ARDL models explaining the yield rate on each of the office markets_

BRATISLAVA – The V4 datasetBUDAPEST – The EMU datasetPRAGUE – The National datasetWARSAW – The USA dataset
Independent variablesCoefficientStd. Err.Independent variablesCoefficientStd. Err.Independent variablesCoefficientStd. Err.Independent variablesCoefficientStd. Err.
Intercept−0.0009***0.0003Adjustment variableIntercept0.00010.0005Intercept−0.00020.0002
DBRYL10.18240.1775BUYL1−0.1949***0.0362DPRYL10.5501***0.1713DWAYL10.22890.1621
DB10V4−0.01820.1103Long-run variablesDB10C−0.04980.0598DWAYL20.3239*0.1811
DB10V4L1−0.2948**0.1003B10E0.8843***0.1105DB10CL10.05580.0524DB10U−0.05520.0761
DB10V4L2−0.11170.0814HICPE−0.5047***0.1480DB10CL20.1241**0.0535DB10UL10.1674**0.0749
DB10V4L30.2436**0.0872GDPE0.00040.0004DB10CL3−0.1933***0.0591DHICPU−0.0306*0.0172
DB10V4L4−0.2822**0.0993BURGR−0.3462***0.0919DM3C0.03050.0284DHICPUL1−0.0617***0.0173
DHICPV4−0.06930.0679Short-run variablesDM3CL1−0.0501*0.0269DPLNUSD0.00120.0013
DHICPV4L10.2485***0.0747DBUYL1−0.3789***0.1323DHICPC−0.0518**0.0189DPLNUSDL10.00010.0014
DHICPV4L20.1277*0.0645DBUYL2−0.14050.1457DHICPCL10.01550.0236DPLNUSDL2−0.00120.0015
DHICPV4L30.2561***0.0803DBUYL3−0.3115*0.1582DHICPCL20.0534**0.0248DPLNUSDL30.0034**0.0014
DHICPV4L40.2384***0.0585DHICPE0.0763**0.0363DHICPCL30.02960.0275DGDPU0.0009***0.0002
DCETOPI−0.0218***0.0041DBURGR0.0212*0.0124DHICPCL40.0849***0.0272DWAVSNA7.80e-06**3.07e-06
DCETOPIL10.00530.0039DBURGRL10.0223**0.0094DGDPC0.0001**0.0001DWAVSNAL1−3.50e-062.87e-06
DCETOPIL2−0.00160.0030Intercept0.0098***0.0021DPRVSNA2.44e-06*1.23e-06DWAVSNAL20.00001***2.80e-06
DCETOPIL30.00230.0031---DPRRGR−0.00910.0119DWARGR0.00890.0079
DCETOPIL4−0.00380.0025---DPRRGRL10.0249*0.0131DWARGRL10.00440.0088
DGDPV40.0007***0.0002------DWARGRL20.0552***0.0127
DGDPV4L10.0006**0.0002------DWARGRL3−0.0488***0.0142
DGDPV4L20.0005**0.0002------DWARGRL40.0274***0.0093
DGDPV4L30.00020.0001---------
DBRVSNA−0.00010.0001---------
DBRVSNAL1−0.00010.0001---------
DBRVSNAL20.0003***0.0001---------
DBRVSNAL30.0003***0.0001---------
DBRVSNAL4−0.00010.0001---------
DBRRGR−0.0195*0.0096---------
DBRRGRL1−0.01820.0134---------
DBRRGRL2−0.0315**0.0141---------
DBRRGRL3−0.0512***0.0129---------
DBRRGRL4−0.0500***0.0104---------
Adj. R20.7098Adj. R20.5008Adj. R20.6708Adj. R20.5002

Descriptive statistics of time series employed in the final models

Time seriesYield rateYield rateYield rateYield rateGovernment Bonds (10-yr)Government Bonds (10-yr)Government Bonds (10-yr)Government Bonds (10-yr)M3 aggregateHICP inflationHICP inflationHICP inflation
Variable codeBRYBUYPRYWAYB10CB10V4B10EB10UM3CHICPCHICPV4HICPE
AreaBratislavaBudapestPragueWarsawCzechiaVisegrad groupEMUUSACzechiaCzechiaVisegrad groupEMU
Unit%%%%%%%%Points (2015 = 100)Rate of changeRate of changeRate of change
Min.0.0500.0500.0400.0440.00250.0096−0.00090.006579.60−0.0079−0.0079−0.0069
Max.0.0750.0780.0680.0650.05380.06300.04490.0383175.460.07970.05340.0363
Mean0.0660.0650.0530.0540.02000.02930.01690.0218120.390.00820.00870.0050
S.D.0.0080.0100.0090.0070.01270.01540.01270.006829.730.01440.01260.0075
Time seriesHICP inflationStock indexStock indexGDPGDPGDPGDPExchange rateExchange rateVacant stock/Net Absorption*Vacant stock/Net Absorption*Vacant stock/Net Absorption*
Variable codeHICPUCETOPISNPIGDPCGDPV4GDPEGDPUPLNUSDUSDEURBRVSNAPRVSNAWAVSNA
AreaUSACentral EuropeUSACzechiaVisegrad groupEUUSAPoland/USAUSA/EMUBratislavaPragueWarsaw
UnitRate of changePointsPointsGrowth rateGrowth rateGrowth rateGrowth ratePLNUSDSqm.Sqm.Sqm.
Min.−0.01991,478.331,131.42−8.736−9.956−11.395−7.8912.7520.9781.813−622.36−83.70
Max.0.03742,515.034,766.187.3768.87512.1407.7594.9531.45218.607185.28523.58
Mean0.00581,926.662,511.140.4770.6410.2930.5733.6601.1947.756−1.8515.34
S.D.0.0119241.73945.581.8722.0412.5071.6850.4400.1103.94696.9278.20
Time seriesRent growth rateRent growth rateRent growth rateRent growth rate--------
Variable codeBRRGRBURGRPRRGRWARGR--------
AreaBratislavaBudapestPragueWarsaw--------
UnitGrowth rateGrowth rateGrowth rateGrowth rate--------
Min.−0.070−0.100−0.035−0.042--------
Max.0.0650.0560.0670.136--------
Mean0.0030.0030.0060.002--------
S.D.0.0230.0230.0180.028--------

Answers to the first two research questions

Research questionBRATISLAVABUDAPESTPRAGUEWARSAW
Which of the following economic areas’ sets of variables — i.e. the National, the V4, the EMU, or the USA — best explain fluctuations in the yield rates for the four office markets?The V4The EMUThe NationalThe USA
Which variables representing the consecutive groups of factors — i.e. monetary influence, capital market factors, economic situation, or local market factors — have a dominant impact on the yield rates?The monetary factor – changes in the inflation rate (DHICPV4)Long-term impact: The capital market factor – interest of government bonds (B10E); Short-term impact: The monetary factor – changes in the inflation rate (DHICPE)The monetary factor – changes in the inflation rate (DHICPC)The capital market factor – changes in interest from government bonds (DB10UL1)

Results of the White and the Breusch-Pagan heteroscedasticity tests on the final ARDL models

The White test for heteroscedasticity
BRATISLAVABUDAPESTPRAGUEWARSAW
chi2(41)Prob > chi2chi2(42)Prob > chi2chi2(41)Prob > chi2chi2(41)Prob > chi2
42.000.4274*43.000.4282*42.000.4274*42.000.4274*
The Breusch-Pagan test for heteroscedasticity
BRATISLAVABUDAPESTPRAGUEWARSAW
F(30, 11)Prob > FF(11, 31)Prob > FF(16, 25)Prob > FF(19, 22)Prob > F
1.590.2112*0.390.9509*0.750.7238*0.670.8083*

The final NARDL model explaining the yield rate on the office market in Bratislava with the USA dataset

BRATISLAVA – The USA dataset
Independent variablesCoefficientStd. Err.
Constant0.1399**0.0331
BRYL1−1.7601**0.4249
HICPUL1+−0.4858*0.1881
HICPUL1−0.03640.1276
USDEUR+0.2266**0.0749
USDEUR−0.01140.0199
SNPIL1+−0.0923***0.0166
SNPIL1−0.01330.0136
GDPUL1+−0.00140.0016
GDPUL1−0.0045*0.0020
BRVSNAL1+0.0021**0.0007
BRVSNAL10.0008*0.0003
BRRGRL1+−0.2651*0.1008
BRRGRL1−0.03680.0485
ΔBRYL10.65580.3742
ΔBRYL2−0.29810.1903
ΔHICPU+−0.2202*0.0833
ΔHICPUL1+0.17380.1169
ΔHICPU−0.06770.0795
ΔHICPUL1−0.0044***0.0713
ΔUSDEUR+0.0980*0.0387
ΔUSDEURL1+−0.09320.0541
ΔUSDEUR−0.04050.0272
ΔUSDEURL1−0.0375*0.0151
ΔSNPI+−0.0599**0.0172
ΔSNPIL1+−0.01600.0182
ΔSNPI0.00130.0124
ΔSNPIL10.02010.0171
ΔGDPU+−0.00020.0009
ΔGDPUL1+0.00070.0008
ΔGDPU−0.00070.0004
ΔGDPUL10.0020**0.0006
ΔBRVSNA+0.0010**0.0004
ΔBRVSNAL1+−0.00040.0003
ΔBRVSNA0.000010.0004
ΔBRVSNAL1−0.0005*0.0002
ΔBRRGR+−0.1524*0.0602
ΔBRRGRL1+0.02960.0265
ΔBRRGR0.03430.0280
ΔBRRGRL10.02760.0235
Adj. R20.6686
TestsStat.p-value
Portmanteau test (chi2)19.06*0.5178
Breusch-Pagan test (chi2)0.4469*0.5038
Ramsey RESET test (F)47.98*0.1056
Jarque-Bera test (chi2)1.426*0.4901
Bounds cointegration test
p levels of critical values10%5%1%
Lower and upper bounds^I(0)I(1)I(0)I(1)I(0)I(1)
F-statistics3.5008*2.123.232.453.613.154.43
t-statistics−4.1429*−2.57−4.04−2.86−4.38−3.43−4.99

Results of the Jarque-Bera and the Shapiro-Wilk normality tests for residuals of the final ARDL models

The Jarque-Bera normality test
BRATISLAVABUDAPESTPRAGUEWARSAW
Chi(2)Prob > chi2Chi(2)Prob > chi2Chi(2)Prob > chi2Chi(2)Prob > chi2
1.0240.5994*1.5870.4523*1.7750.4117*3.1040.2118*
The Shapiro-Wilk normality test
BRATISLAVABUDAPESTPRAGUEWARSAW
zProb > zzProb > zzProb > zzProb > z
0.8310.20287*0.6660.25276*0.7500.22665*0.9870.16187*

Results of the Bounds cointegration test (Case 3)

BRATISLAVA – the V4 dataset
p levels of critical values10%5%1%
Lower and upper boundsI(0)I(1)I(0)I(1)I(0)I(1)
F-statistics2.3642.2843.7282.7604.4123.9146.059
t-statistics−0.491−2.427−3.896−2.805−4.358−3.575−5.304
BUDAPEST – the EMU dataset
p levels of critical values10%5%1%
Lower and upper boundsI(0)I(1)I(0)I(1)I(0)I(1)
F-statistics9.379***2.5983.8833.1504.6064.4616.308
t-statistics−5.382***−2.508−3.619−2.864−4.032−3.587−4.866
PRAGUE – the NATIONAL dataset
p levels of critical values10%5%1%
Lower and upper boundsI(0)I(1)I(0)I(1)I(0)I(1)
F-statistics7.6062.3283.6582.7944.2993.9105.821
t-statistics−1.813−2.493−3.973−2.854−4.413−3.591−5.306
WARSAW – the USA dataset
p levels of critical values10%5%1%
Lower and upper boundsI(0)I(1)I(0)I(1)I(0)I(1)
F-statistics6.2832.2913.7172.7654.3933.9136.020
t-statistics−0.519−2.438−3.909−2.813−4.367−3.578−5.304

The independent variables in ARDL and NARDL models

Types of variables according to the Gordon growth modelVariables characteristicsEconomic areas’ sets of variables
The NationalThe V4The EMUThe USA
Risk-free interest ratesGovernment bonds interest (10-yr)SK, HU, CZ, PLAverage in V4 countriesEMUUSA
Monetary (risk premium)M3 monetary aggregateEMU, HU, CZ, PL-EMUUSA
HICP inflation rateSK, HU, CZ, PLAverage in V4 countriesEMUUSA
Exchange rates--National currency/EURNational currency/USD
Alternative investments (risk premium)Stock indicesSAX, BUX, PX, WIG20CETOPDAXS&P 500
Country specific (risk premium)GDP growth rate qoqSK, HU, CZ, PLAverage in V4 countriesEMUUSA
Office market characteristics (risk premium)Vacancy/net absorption*Bratislava, Budapest, Prague, WarsawBratislava, Budapest, Prague, WarsawBratislava, Budapest, Prague, WarsawBratislava, Budapest, Prague, Warsaw
Cash flow growthRent growth rate

Results of long-run and short-run asymmetry, long-run positive and negative effects, and the Wald test

Independent variablesLong-run asymmetryShort-run asymmetryWald test long-run asymmetryWald test short-run asymmetry
F-statF-statF-statF-stat
HICPU4.746*0.01123.990.01
USDEUR11.12**2.2717.02*2.27
SNPI35.51***8.562**16.12**8.56**
GDPU89.53***1.21518.36**1.22
BRVSNA7.605*2.9037.42*2.90
BRRGR11.24**10.26**6.01*10.26**
Long-run asymmetry positive and negative effects
Independent variablesLong-run effect+Long-run effect
CoefficientF-statCoefficientF-stat
HICPU−0.276**11.650.0210.0838
USDEUR0.129**17.640.0060.3333
SNPI−0.052***34.370.0080.8072
GDPU−0.0010.79350.003*6.595
BRVSNA0.001**13.4−0.000**8.726
BRRGR−0.151**10.660.0210.5401

Results of the Breusch-Godfrey autocorrelation test on the final ARDL models

Number of lagsBRATISLAVABUDAPESTPRAGUEWARSAW
chi2Prob > chi2chi2Prob > chi2chi2Prob > chi2chi2Prob > chi2
10.0970.7557*0.3170.5733*0.4410.5067*0.8450.3581*
20.3890.8233*0.3210.8516*0.6910.7077*1.8400.3985*
31.6930.6386*0.4090.9384*2.4600.4825*2.9430.4004*
41.8360.7658*1.2940.8624*2.5620.6335*5.4810.2414*

Results of the ADF stationarity test of time series employed in the final ARDL and NARDL models

BRATISLAVA – the V4 dataset (ARDL)
VariableBRYB10V4HICPV4CETOPIGDPV4BRVSNABRRGR
LevelsTest statistic−0.864−2.281−2.486−3.246**−5.985***−2.417−4.611***
First differencesTest statistic−5.010***−2.848*−7.630***−5.566***-−6.661***-
BUDAPEST – the EMU dataset (ARDL)
VariableBUYB10EHICPEGDPEBURGR--
LevelsTest statistic−1.141−2.078−2.664*−6.690***−3.588**--
First differencesTest statistic−3.131**−3.683***−6.960***-−6.284***--
PRAGUE – the NATIONAL dataset (ARDL)
VariablePRYB10CM3CHICPCGDPCPRVSNAPRRGR
LevelsTest statistic−1.481−0.8970.360−3.926−5.883***−4.564***−1.996
First differencesTest statistic−2.988**−3.565**−4.499***−6.677***--−7.200***
WARSAW – the USA dataset (ARDL)
VariableWAYB10UHICPUPLNUSDGDPUWAVSNAWARGR
LevelsTest statistic−1.018−2.165−4.566***−1.096−6.499***−4.524***−3.513
First differencesTest statistic−2.524**−3.285**-−5.656***--−6.799***
BRATISLAVA – the USA dataset (NARDL)
VariableBRYHICPUUSDEURSNPIGDPUBRVSNABRRGR
LevelsTest statistic−4.566***−4.566***−1.864−1.631−6.499***−2.417−4.611***
First differencesTest statistic--−4.358***−5.273***-−6.661***-
DOI: https://doi.org/10.2478/ceej-2025-0016 | Journal eISSN: 2543-6821 | Journal ISSN: 2544-9001
Language: English
Page range: 260 - 283
Submitted on: May 25, 2025
Accepted on: Sep 15, 2025
Published on: Oct 31, 2025
Published by: Faculty of Economic Sciences, University of Warsaw
In partnership with: Paradigm Publishing Services
Publication frequency: 1 times per year

© 2025 Krzysztof Adam Nowak, published by Faculty of Economic Sciences, University of Warsaw
This work is licensed under the Creative Commons Attribution 4.0 License.