Have a personal or library account? Click to login
Possibilities of Using Decision Support Systems for Agriculture in Areas with High Agrarian Fragmentation Cover

Possibilities of Using Decision Support Systems for Agriculture in Areas with High Agrarian Fragmentation

Open Access
|Apr 2025

References

  1. Ara, J., Turner, L., Harrison, M. T., Monjardino, M., deVoil, P., & Rodriguez, D. (2024). Application, Adoption and Opportunities for Improving Decision Support Systems in Irrigated Agriculture: A Review. Agricultural Water Management, 257, 1–16. https://doi.org/10.1016/j.agwat.2021.107161
  2. Balkrishna, B. B., & Desmukh, A. A. (2017). A Study on Role of Social Media in Agriculture Marketing and its Scope. Global Journal of Management and Business Research, 17(1), 32–36.
  3. Bellon-Maurel, V., Brossard, L., Garcia, F., Inria, N. M., & Termier, A. (2022). Agriculture and Digital Technology. France: INRIA.
  4. Bentley, W. (1987). Economic and Ecological Approaches to Land Fragmentation: In Defence of a Much-Maligned Phenomenon. Annual Review of Anthropology, 16, 31–67.
  5. Bournaris, T., & Papathanasiou, J. (2012). A DSS for Planning the Agricultural Production. Int. J. Business Innovation and Research, 6(1), 117–134.
  6. CDR. (2019). Wykorzystanie Programów Komputerowych i Aplikacji Mobilnych w Gospodarstwie Rolnym [The Use of Computer Programs and Mobile Applications on the Farm]. Poznań: Centrum Doradztwa Rolniczego w Brwinowie Oddział w Poznaniu.
  7. Chi, L., Han, S., Huan, M., Li, Y., & Liu, J. (2022). Land Fragmentation, Technology Adoption and Chemical Fertilizer Application: Evidence from China. International Journal of Environmental Research and Public Health, 19, 8147. https://doi.org/10.3390/ijerph19138147.
  8. Choudhary, K., Jadoun, R. S., & Mandoriya, H. L. (2016). Role of Cloud Computing Technology in Agriculture Fields. Computer Engineering and Intelligent Systems, 7(3), 1–7.
  9. Cordel, P. (2021). Overcoming Barriers to Uptake of Digital Agriculture by Farmers. Report. Retrieved from https://www.h2020fairshare.eu/wpcontent/uploads/2023/03/FAIRshare_D3.6_Overcoming_barriers_to_uptake_of_DA_by_farmers_FINAL.pdf.
  10. CTA. (2018). Serving Smallholder Farmers in a Digital Age. Brussels Development Briefings, 190. Brussels: CTA.
  11. Cupiał, M., & Kowalczyk, Z. (2018). Computer-Aided Fertilisation Using the Nawozy-5 (Fertiliser-5) Software. BIO Web of Conferences – Contemporary Research Trends in Agricultural Engineering, 10, 1–4. http://dx.doi.org/10.1051/bioconf/20181002002
  12. Czapiewski, K. Ł., Kulikowski, R., Bański, J., Bednarek-Szczepańska, M., Mazur, M., & Ferenc, M. (2012). Wykorzystanie ICT w Rolnictwie Mazowsza - Ujęcie Przestrzenne. [Use of ICT in Mazovian Agriculture - Spatial Approach]. Studia Obszarów Wiejskich, tom XXX. Warszawa: PAN.
  13. Daum, T. (2018). ICT Applications in Agriculture. In P. Ferranti, E. Berry, & A. Jock (Eds.), Encyclopedia of Food Security and Sustainability. Edition 1 (pp. 255–260). Elsevier. http://dx.doi.org/10.1016/B978-0-08-100596-5.22591-2
  14. Demetriou, D. (2013). Land Fragmentation. In D. Demetriou (Ed.), The Development of an Integrated Planning and Decision Support System (IPDSS) for Land Consolidation (pp. 11–37). Springer. http://dx.doi.org/10.1007/978-3-319-02347-2
  15. Dhillon, R., Moncur, Q., Lowell, C., Kumaran, S., Folck, A., & Cao, D. (2023). Precision Agriculture (PA) Techniques for Smallholder Farmers in the US: Status and Potential Opportunities. Proceedings of the National Conference on Next-Generation Sustainable Technologies for Small-Scale Producers. Springer Nature, 34, 166–175. https://doi.org/10.2991/978-94-6463-282-8_19
  16. Dibbern, T., Santos Romani, L. A., & Silveira Massruh, S. M. F. (2024). Main Drivers and Barriers to the Adoption of Digital Agriculture Technologies. Smart Agricultural Technology, 8, 1–10. https://doi.org/10.1016/j.atech.2024.100459
  17. Caffaro, F., Cremasco, M. M., Roccato, M. & Cavallo, E. (2020). Drivers of Farmers’ Intention to Adopt Technological Innovations in Italy: The Role of Information Sources, Perceived Usefulness, and Perceived Ease of Use. Journal of Rural Studies 76: 264–27. http://dx.doi.org/10.1016/j.jrurstud.2020.04.028
  18. Dhehibi, B., Rudiger, U., Moyo, H. P., & Dhraief, M. Z. (2020). Agricultural Technology Transfer Preferences of Smallholder Farmers in Tunisia’s Arid Regions. Sustainability, 12(1), 1–18. http://dx.doi.org/10.3390/su12010421
  19. González-Andújar, J.L. (2020). Introduction to Decision Support Systems. In G. Chantre, & L. González-Andújar (Eds.), Decision Support Systems for Weed Management. Springer (pp. 25–38). https://doi.org/10.1007/978-3-030-44402-0_2
  20. Dittmer, K. M., Burns, S., Shelton, S., & Wollenberg, E. (2022). Principles for Socially Inclusive Digital Tools for Smallholder Farmers: A Guide. Agroecological TRANSITIONS: Inclusive Digital Tools to Enable Climate-informed Agroecological Transitions (ATDT). Cali, Colombia: Alliance of Bioversity & CIAT. https://cgspace.cgiar.org/server/api/core/bitstreams/49d17f1e-eb5a-4f27-823f-25e20e916e43/content
  21. Dutta, M., & Ketan, A. (2023). Role of Information Communication Technology in Agriculture. International Journal of Novel Research and Development, 8(10), 863–870.
  22. Eastwood, C., Turner, J. A., Selbie, D., Henwood, R., Espig, M., & Wever, M. (2023). A Review of Multi-Scale Barriers to Transitioning from Digital Agriculture to a Digital Bioeconomy. Retrieved from https://www.cabidigitallibrary.org/doi/full/10.1079/cabireviews.2023.0002
  23. Eder, A. (2024). The Effect of Land Fragmentation on Risk and Technical Efficiency of Crop Farms. DFG Research Unit 2569, Humboldt-Universität zu Berlin, Berlin.
  24. Elbehri, A., & Chestnov R. (2021). Digital Agriculture in Action – Artificial Intelligence for Agriculture. FAO and ITU, Bangkok.
  25. Foray, D., David, P. A., & Hall, B. (2009). Smart Specialisation – The Concept. Knowledge Economists Policy Brief no 9. Brussels.
  26. Fountas, S., Espejo-Garcıa, B., Kasimati, A., Mylonas, N., & N. Darra. (2020). The Future of Digital Agriculture: Technologies and Opportunities. IT Professional, 22(1), 24–28. http://dx.doi.org/10.1109/MITP.2019.2963412
  27. Gebresenbet, G., Techane, B., Patterson, D., Henrik, P., Fischer, B., Mandaluniz, N., … Nasirahmadi, A. (2023). A Concept for Application of Integrated Digital Technologies to Enhance Future Smart Agricultural Systems. Smart Agricultural Technology, 5, 1–12. https://doi.org/10.1016/j.atech.2023.100255
  28. Geppert, F., Krachunova, T., & Bellingrath-Kimura, S. D. (2024). Digital and Smart Technologies in Agriculture in Germany: Identification of Key Recommendations for Sustainability Actions. Studien zum deutschen Innovationssystem, No 4. Berlin: Expertenkommission Forschung und Innovation (EFI).
  29. Gokool, S., Mahomed, M., Brewer, K., Naiken, V., Clulow, A., Sibanda, M., & Mabhaudhi, T. (2024). Crop Mapping in Smallholder Farms Using Unmanned Aerial Vehicle Imagery and Geospatial Cloud Computing Infrastructure. Heliyon, 10(5), 1–25. https://doi.org/10.1016/j.heliyon.2024.e26913
  30. Hänisch, T. (2017). Grundlagen Industrie 4.0. In V. Andelfinger, & T. Hänisch (Eds.), Industrie 4.0 (pp. 9–31). Wiesbaden: Springer Gabler. http://dx.doi.org/10.1007/978-3-658-15557-5
  31. Härtel, I. (2019). Agrar-Digitalrecht für eine nachhaltige Landwirtschaft 4.0. Natur und Recht, 41, 577–586. https://link.springer.com/article/10.1007/s10357-019-3571-y
  32. Herd, D. (2014). Network Systems and Cloud Applications in Livestock Farming. Landtechnik, 69(5), 245–249.
  33. Hornung, G., & Hofmann, K. (2017). Rechtsfragen bei Industrie 4.0: Rahmenbedingungen, Herausforderungen und Lösungsansätze. In G. Reinhart (Ed.), Handbuch Industrie 4.0 – Geschäftsmodelle, Prozesse, Technik (pp. 191–212). München: GmbH. http://dx.doi.org/10.3139/9783446449893.008
  34. Herhem, T., Rooijakkers, L., Berckmans, D., Pena Fernández, A., Norton, T., Berckmans, D., & Vranken, E. (2017). Appropriate Data Visualisation is Key to Precision Livestock Farming Acceptance. Computers and Electronics in Agriculture, 138, 1–10. http://dx.doi.org/10.1016/j.compag.2017.04.003
  35. Ivanochkoa, I., Jr., Greguša, M., & Melnykb, O. (2024). Smart Farming System Based on Cloud Computing Technologies. Procedia Computer Science, 238, 857–862. http://dx.doi.org/10.1016/j.procs.2024.06.103
  36. Irish Farm Centre. (2019). Digital Agriculture Technology. Adoption & Attitudes Study. https://www.ifa.ie/wp-content/uploads/2020/11/Digital-Ag-Tech-Adoption-Attitudes.pdf
  37. Jiao X., Zhang, H., Ma, W., Wang, Ch., Li, X., & Zhang, F. (2019), Science and Technology Backyard: A Novel Approach to Empower Smallholder Farmers for Sustainable Intensification of Agriculture in China. Journal of Integrative Agriculture, 18(8), 1657–1666. http://dx.doi.org/10.1016/S2095-3119(19)62770-X
  38. Kadigi, R. M. J., Kashaigili, J. J., Sirima, A., Kamau, F., Sikira, A. & Mbungu. W. (2017). Land Fragmentation, Agricultural Productivity and Implications for Agricultural Investments in the Southern Agricultural Growth Corridor of Tanzania (SAGCOT) Region, Tanzania. Journal of Development and Agricultural Economics, 9(2), 26–36. http://dx.doi.org/10.5897/JDAE2016.0797
  39. Kamal M., & Bablu, T. A. (2023). Mobile Applications Empowering Smallholder Farmers: A Review of the Impact on Agricultural Development. International Journal of Social Analytics, 8, 36–50.
  40. Kassambara, A., Mondal, M. A. H., & Nguyen, T. T. (2019). AI for Decision-Making in Agriculture. Agriculture, 9(3), 56
  41. Kramarz, P., & Runowski, H. (2025). Trust and Communication in Agriculture. In J. Paliszkiewicz, K. Chen, & M. Mendel (Eds.), Trust in Social and Business Relations: Theory and Practice (pp. 178–191). New York: Routledge. http://dx.doi.org/10.4324/9781032633749-18
  42. Krasowicz, S., Oleszek, W., Horabik, J., Dębicki, R., Jankowiak, J., Stuczyński, J. & Jadczyszyn, J. (2011). Racjonalne Gospodarowanie Środowiskiem Glebowym Polski. Polish Journal of Agronomy, 7, 43–58.
  43. Lin, Y., Huixiang, L., Li, A., Shi, Y., & Zhuang, S. (2024). Application of AI-driven Cloud Services in Intelligent Agriculture Pest and Disease Prediction. Applied and Computational Engineering, 67(1), 61–67. https://www.ewadirect.com/proceedings/ace/article/view/13335#
  44. Linsner, S., Kuntke, F., Steinbrink, E., Franken, J., & Reuter, Ch. (2021). The Role of Privacy in Digitalization – Analyzing Perspectives of German Farmers. Proceedings on Privacy Enhancing Technologies, 3, 334–350. http://dx.doi.org/10.2478/popets-2021-0050
  45. Piwowar, A. (2018). Opportunities and Barriers to the Development of Agriculture 4.0 in the Context of Low Carbon Agriculture in Poland. Retrieved from http://dx.doi.org/10.36689/uhk/hed/2018-02-016
  46. Reichardt, M., Jürgens, C., Kloble, U., Hüueter, J., & Moser, K. (2009). Dissemination of Precision Farming in Germany. Acceptance, Adoption, Obstacles, Knowledge Transfer, and Training Activities. Precision Agriculture, 10(6), 525–545. http://dx.doi.org/10.1007/s11119-009-9112-6
  47. Rybicki, R. (2021). Environmental Effects of Reducing Land Fragmentation in Land Consolidation at West Roztocze at the Slope Scale. Journal of Ecological Engineering, 22(1), 240–248. http://dx.doi.org/10.12911/22998993/129580
  48. Runowski, H. (2019). Digitalization in Agriculture – Development Opportunities and Barriers. In J. Paliszkiewicz (Ed.), Management and Information Technology: New Challenges (pp. 233–246). Warsaw: Warsaw University of Life Sciences Press.
  49. Runowski, H., & Kramarz, P. (2025). Trust in Artificial Intelligence in Agriculture. In J. Paliszkiewicz, & J. Gołuchowski (Eds.), Trust and Artificial Intelligence: Development and Application of AI Technology (pp. 229–241). New York: Routledge. http://dx.doi.org/10.4324/9781032627236-21
  50. Singh, A. K, Balabaygloo, B. J., Bekee, B., Blair, S. W., Fey, S., Fotouhi, F., … Valdivia, C. (2024). Smart Connected Farms and Networked Farmers to Improve Crop Production, Sustainability and Profitability. Front. Agron., 6, 1–18. doi: https://doi.org/10.3389/fagro.2024.1410829
  51. Singh, N. K., Sunitha, N. H., Tripathi, G., Saikanth, D. R. K., Sharma, A., Jose, A. E., & Karuna Jeba Mary, M. V. (2023). Impact of Digital Technologies in Agricultural Extension. Asian Journal of Agricultural Extension, Economics & Sociology, 41(9), 963–970. http://dx.doi.org/10.9734/AJAEES/2023/v41i92127
  52. Shilomboleni, H., Pelletier, B., & Gebru, B. (2020). ICT 4 Scale in Smallholder Agriculture: Contributions and Challenges. Information Technologies & International Development, 16, 47–65.
  53. Sridevy, S., & Djanaguiraman, M. (2023). A Glance at Agricultural Decision Support Systems. The Pharma Innovation Journal, 12(5), 755–757.
  54. Szymańska, E. (2021). Zmiany w Powierzchni Gospodarstw Rolnych w Polsce w Latach 2010–2018 [Changes in the Agrarian Structure of the Polish Countryside in the Years 1918–2018]. Zeszyty Wiejskie, 27, 31–58. http://dx.doi.org/10.18778/1506-6541.27.02
  55. Stępień, S., Smędzik-Ambroży, K., Matuszczak, A., & Tošović-Stevanović. A. (2022). Small-Scale Farms in the Environmental Sustainability of Rural Areas. Opinions of Farmers from Poland, Romania and Lithuania. Economics and Environment, 9, 168–185. http://dx.doi.org/10.34659/eis.2022.81.2.450
  56. Stępień, S., Smędzik-Ambroży, K., Polcyn, J., Kwiliński, A., & Maican, I. (2023). Are Small Farms Sustainable and Technologically Smart? Evidence from Poland, Romania, and Lithuania. Central European Economic Journal, 10(57), 116–132. http://dx.doi.org/10.2478/ceej-2023-0007
  57. Subejo, Untari, D. W., Wati, R. I., & Mewasdinta, G. (2019). Modernization of Agriculture and Use of Information and Communication Technologies by Farmers by Costal Yogyakarta. Indonesian Journal of Geography, 51, 332–345. http://dx.doi.org/10.22146/ijg.41706
  58. Tomaszewska, W. (2013). Dostęp do Technologii Informacyjno-Komunikacyjnych w Społeczeństwie Informacyjnym. Przykład Polskich Regionów. [The Access to Information and Communication Technologies in the Information Society. The Example of Polish Regions]. Acta Universitatis Lodziensis, Folia Oeconomica, 290, 23–37.
  59. Trendov, N. M., Varas, S., & Zeng, M. (2019). Digital technologies in agriculture and rural areas. Briefing paper. Food and Agriculture Organization of the United Nations, Rome.
  60. Wang, B., & Dong, H. (2023). Research on the Farmers’ Agricultural Digital Service Use Behavior Under the Rural Revitalization Strategy—Based on the Extended Technology Acceptance Model. Frontiers in Environmental Science, 11:1180072. https://doi.org/10.3389/fenvs.2023.1180072.
  61. Wayessa, B. G. (2017). The Role of Farmers to Farmers Knowledge Sharing in Improved Sesame Technology Adoption in Case of Meisso District West Hararghe Zone. Journal of Poverty, Investment and Development, 39, 13–21.
  62. Wójtowicz, A., Pasternak, M., Zacharczuk, M., & Mroczek, M. (2016). Systemy Wspomagające Podejmowanie Decyzji w Ochronie Roślin – Wyzwanie Dla Nauki i Doradztwa Rolniczego [Decision Support Systems in Plant Protection – The Challenges for Science and Extension Service]. Zagadnienia Doradztwa Rolniczego, 1, 62–75.
  63. Yadav, A. L., Khare, S., & Talwandi, N. S. (2024). Cloud-Based Agricultural Monitoring System for Precision Farming. Retrieved from https://www.researchgate.net/publication/380587749_Cloud-Based_Agricultural_Monitoring_System_for_Precision_Farming.
  64. Zhai, Z., Martínez, J. F., Beltran, V., & Martínez, N. L. (2020). Decision Support Systems for Agriculture 4.0: Survey and Challenges. Computers and Electronics in Agriculture, 170, 1–16. http://dx.doi.org/10.1016/j.compag.2020.105256
DOI: https://doi.org/10.2478/ceej-2025-0008 | Journal eISSN: 2543-6821 | Journal ISSN: 2544-9001
Language: English
Page range: 120 - 137
Submitted on: Jan 20, 2025
Accepted on: Mar 10, 2025
Published on: Apr 16, 2025
Published by: Sciendo
In partnership with: Paradigm Publishing Services
Publication frequency: 1 times per year

© 2025 Paulina Kramarz, published by Sciendo
This work is licensed under the Creative Commons Attribution 4.0 License.