References
- Ara, J., Turner, L., Harrison, M. T., Monjardino, M., deVoil, P., & Rodriguez, D. (2024). Application, Adoption and Opportunities for Improving Decision Support Systems in Irrigated Agriculture: A Review. Agricultural Water Management, 257, 1–16.
https://doi.org/10.1016/j.agwat.2021.107161 - Balkrishna, B. B., & Desmukh, A. A. (2017). A Study on Role of Social Media in Agriculture Marketing and its Scope. Global Journal of Management and Business Research, 17(1), 32–36.
- Bellon-Maurel, V., Brossard, L., Garcia, F., Inria, N. M., & Termier, A. (2022). Agriculture and Digital Technology. France: INRIA.
- Bentley, W. (1987). Economic and Ecological Approaches to Land Fragmentation: In Defence of a Much-Maligned Phenomenon. Annual Review of Anthropology, 16, 31–67.
- Bournaris, T., & Papathanasiou, J. (2012). A DSS for Planning the Agricultural Production. Int. J. Business Innovation and Research, 6(1), 117–134.
- CDR. (2019). Wykorzystanie Programów Komputerowych i Aplikacji Mobilnych w Gospodarstwie Rolnym [The Use of Computer Programs and Mobile Applications on the Farm]. Poznań: Centrum Doradztwa Rolniczego w Brwinowie Oddział w Poznaniu.
- Chi, L., Han, S., Huan, M., Li, Y., & Liu, J. (2022). Land Fragmentation, Technology Adoption and Chemical Fertilizer Application: Evidence from China. International Journal of Environmental Research and Public Health, 19, 8147.
https://doi.org/10.3390/ijerph19138147 . - Choudhary, K., Jadoun, R. S., & Mandoriya, H. L. (2016). Role of Cloud Computing Technology in Agriculture Fields. Computer Engineering and Intelligent Systems, 7(3), 1–7.
- Cordel, P. (2021). Overcoming Barriers to Uptake of Digital Agriculture by Farmers. Report. Retrieved from
https://www.h2020fairshare.eu/wpcontent/uploads/2023/03/FAIRshare_D3.6_Overcoming_barriers_to_uptake_of_DA_by_farmers_FINAL.pdf . - CTA. (2018). Serving Smallholder Farmers in a Digital Age. Brussels Development Briefings, 190. Brussels: CTA.
- Cupiał, M., & Kowalczyk, Z. (2018). Computer-Aided Fertilisation Using the Nawozy-5 (Fertiliser-5) Software. BIO Web of Conferences – Contemporary Research Trends in Agricultural Engineering, 10, 1–4.
http://dx.doi.org/10.1051/bioconf/20181002002 - Czapiewski, K. Ł., Kulikowski, R., Bański, J., Bednarek-Szczepańska, M., Mazur, M., & Ferenc, M. (2012). Wykorzystanie ICT w Rolnictwie Mazowsza - Ujęcie Przestrzenne. [Use of ICT in Mazovian Agriculture - Spatial Approach]. Studia Obszarów Wiejskich, tom XXX. Warszawa: PAN.
- Daum, T. (2018). ICT Applications in Agriculture. In P. Ferranti, E. Berry, & A. Jock (Eds.), Encyclopedia of Food Security and Sustainability. Edition 1 (pp. 255–260). Elsevier.
http://dx.doi.org/10.1016/B978-0-08-100596-5.22591-2 - Demetriou, D. (2013). Land Fragmentation. In D. Demetriou (Ed.), The Development of an Integrated Planning and Decision Support System (IPDSS) for Land Consolidation (pp. 11–37). Springer.
http://dx.doi.org/10.1007/978-3-319-02347-2 - Dhillon, R., Moncur, Q., Lowell, C., Kumaran, S., Folck, A., & Cao, D. (2023). Precision Agriculture (PA) Techniques for Smallholder Farmers in the US: Status and Potential Opportunities. Proceedings of the National Conference on Next-Generation Sustainable Technologies for Small-Scale Producers. Springer Nature, 34, 166–175.
https://doi.org/10.2991/978-94-6463-282-8_19 - Dibbern, T., Santos Romani, L. A., & Silveira Massruh, S. M. F. (2024). Main Drivers and Barriers to the Adoption of Digital Agriculture Technologies. Smart Agricultural Technology, 8, 1–10.
https://doi.org/10.1016/j.atech.2024.100459 - Caffaro, F., Cremasco, M. M., Roccato, M. & Cavallo, E. (2020). Drivers of Farmers’ Intention to Adopt Technological Innovations in Italy: The Role of Information Sources, Perceived Usefulness, and Perceived Ease of Use. Journal of Rural Studies 76: 264–27.
http://dx.doi.org/10.1016/j.jrurstud.2020.04.028 - Dhehibi, B., Rudiger, U., Moyo, H. P., & Dhraief, M. Z. (2020). Agricultural Technology Transfer Preferences of Smallholder Farmers in Tunisia’s Arid Regions. Sustainability, 12(1), 1–18.
http://dx.doi.org/10.3390/su12010421 - González-Andújar, J.L. (2020). Introduction to Decision Support Systems. In G. Chantre, & L. González-Andújar (Eds.), Decision Support Systems for Weed Management. Springer (pp. 25–38).
https://doi.org/10.1007/978-3-030-44402-0_2 - Dittmer, K. M., Burns, S., Shelton, S., & Wollenberg, E. (2022). Principles for Socially Inclusive Digital Tools for Smallholder Farmers: A Guide. Agroecological TRANSITIONS: Inclusive Digital Tools to Enable Climate-informed Agroecological Transitions (ATDT). Cali, Colombia: Alliance of Bioversity & CIAT.
https://cgspace.cgiar.org/server/api/core/bitstreams/49d17f1e-eb5a-4f27-823f-25e20e916e43/content - Dutta, M., & Ketan, A. (2023). Role of Information Communication Technology in Agriculture. International Journal of Novel Research and Development, 8(10), 863–870.
- Eastwood, C., Turner, J. A., Selbie, D., Henwood, R., Espig, M., & Wever, M. (2023). A Review of Multi-Scale Barriers to Transitioning from Digital Agriculture to a Digital Bioeconomy. Retrieved from
https://www.cabidigitallibrary.org/doi/full/10.1079/cabireviews.2023.0002 - Eder, A. (2024). The Effect of Land Fragmentation on Risk and Technical Efficiency of Crop Farms. DFG Research Unit 2569, Humboldt-Universität zu Berlin, Berlin.
- Elbehri, A., & Chestnov R. (2021). Digital Agriculture in Action – Artificial Intelligence for Agriculture. FAO and ITU, Bangkok.
- Foray, D., David, P. A., & Hall, B. (2009). Smart Specialisation – The Concept. Knowledge Economists Policy Brief no 9. Brussels.
- Fountas, S., Espejo-Garcıa, B., Kasimati, A., Mylonas, N., & N. Darra. (2020). The Future of Digital Agriculture: Technologies and Opportunities. IT Professional, 22(1), 24–28.
http://dx.doi.org/10.1109/MITP.2019.2963412 - Gebresenbet, G., Techane, B., Patterson, D., Henrik, P., Fischer, B., Mandaluniz, N., … Nasirahmadi, A. (2023). A Concept for Application of Integrated Digital Technologies to Enhance Future Smart Agricultural Systems. Smart Agricultural Technology, 5, 1–12.
https://doi.org/10.1016/j.atech.2023.100255 - Geppert, F., Krachunova, T., & Bellingrath-Kimura, S. D. (2024). Digital and Smart Technologies in Agriculture in Germany: Identification of Key Recommendations for Sustainability Actions. Studien zum deutschen Innovationssystem, No 4. Berlin: Expertenkommission Forschung und Innovation (EFI).
- Gokool, S., Mahomed, M., Brewer, K., Naiken, V., Clulow, A., Sibanda, M., & Mabhaudhi, T. (2024). Crop Mapping in Smallholder Farms Using Unmanned Aerial Vehicle Imagery and Geospatial Cloud Computing Infrastructure. Heliyon, 10(5), 1–25.
https://doi.org/10.1016/j.heliyon.2024.e26913 - Hänisch, T. (2017). Grundlagen Industrie 4.0. In V. Andelfinger, & T. Hänisch (Eds.), Industrie 4.0 (pp. 9–31). Wiesbaden: Springer Gabler.
http://dx.doi.org/10.1007/978-3-658-15557-5 - Härtel, I. (2019). Agrar-Digitalrecht für eine nachhaltige Landwirtschaft 4.0. Natur und Recht, 41, 577–586.
https://link.springer.com/article/10.1007/s10357-019-3571-y - Herd, D. (2014). Network Systems and Cloud Applications in Livestock Farming. Landtechnik, 69(5), 245–249.
- Hornung, G., & Hofmann, K. (2017). Rechtsfragen bei Industrie 4.0: Rahmenbedingungen, Herausforderungen und Lösungsansätze. In G. Reinhart (Ed.), Handbuch Industrie 4.0 – Geschäftsmodelle, Prozesse, Technik (pp. 191–212). München: GmbH.
http://dx.doi.org/10.3139/9783446449893.008 - Herhem, T., Rooijakkers, L., Berckmans, D., Pena Fernández, A., Norton, T., Berckmans, D., & Vranken, E. (2017). Appropriate Data Visualisation is Key to Precision Livestock Farming Acceptance. Computers and Electronics in Agriculture, 138, 1–10.
http://dx.doi.org/10.1016/j.compag.2017.04.003 - Ivanochkoa, I., Jr., Greguša, M., & Melnykb, O. (2024). Smart Farming System Based on Cloud Computing Technologies. Procedia Computer Science, 238, 857–862.
http://dx.doi.org/10.1016/j.procs.2024.06.103 - Irish Farm Centre. (2019). Digital Agriculture Technology. Adoption & Attitudes Study.
https://www.ifa.ie/wp-content/uploads/2020/11/Digital-Ag-Tech-Adoption-Attitudes.pdf - Jiao X., Zhang, H., Ma, W., Wang, Ch., Li, X., & Zhang, F. (2019), Science and Technology Backyard: A Novel Approach to Empower Smallholder Farmers for Sustainable Intensification of Agriculture in China. Journal of Integrative Agriculture, 18(8), 1657–1666.
http://dx.doi.org/10.1016/S2095-3119(19)62770-X - Kadigi, R. M. J., Kashaigili, J. J., Sirima, A., Kamau, F., Sikira, A. & Mbungu. W. (2017). Land Fragmentation, Agricultural Productivity and Implications for Agricultural Investments in the Southern Agricultural Growth Corridor of Tanzania (SAGCOT) Region, Tanzania. Journal of Development and Agricultural Economics, 9(2), 26–36.
http://dx.doi.org/10.5897/JDAE2016.0797 - Kamal M., & Bablu, T. A. (2023). Mobile Applications Empowering Smallholder Farmers: A Review of the Impact on Agricultural Development. International Journal of Social Analytics, 8, 36–50.
- Kassambara, A., Mondal, M. A. H., & Nguyen, T. T. (2019). AI for Decision-Making in Agriculture. Agriculture, 9(3), 56
- Kramarz, P., & Runowski, H. (2025). Trust and Communication in Agriculture. In J. Paliszkiewicz, K. Chen, & M. Mendel (Eds.), Trust in Social and Business Relations: Theory and Practice (pp. 178–191). New York: Routledge.
http://dx.doi.org/10.4324/9781032633749-18 - Krasowicz, S., Oleszek, W., Horabik, J., Dębicki, R., Jankowiak, J., Stuczyński, J. & Jadczyszyn, J. (2011). Racjonalne Gospodarowanie Środowiskiem Glebowym Polski. Polish Journal of Agronomy, 7, 43–58.
- Lin, Y., Huixiang, L., Li, A., Shi, Y., & Zhuang, S. (2024). Application of AI-driven Cloud Services in Intelligent Agriculture Pest and Disease Prediction. Applied and Computational Engineering, 67(1), 61–67.
https://www.ewadirect.com/proceedings/ace/article/view/13335# - Linsner, S., Kuntke, F., Steinbrink, E., Franken, J., & Reuter, Ch. (2021). The Role of Privacy in Digitalization – Analyzing Perspectives of German Farmers. Proceedings on Privacy Enhancing Technologies, 3, 334–350.
http://dx.doi.org/10.2478/popets-2021-0050 - Piwowar, A. (2018). Opportunities and Barriers to the Development of Agriculture 4.0 in the Context of Low Carbon Agriculture in Poland. Retrieved from
http://dx.doi.org/10.36689/uhk/hed/2018-02-016 - Reichardt, M., Jürgens, C., Kloble, U., Hüueter, J., & Moser, K. (2009). Dissemination of Precision Farming in Germany. Acceptance, Adoption, Obstacles, Knowledge Transfer, and Training Activities. Precision Agriculture, 10(6), 525–545.
http://dx.doi.org/10.1007/s11119-009-9112-6 - Rybicki, R. (2021). Environmental Effects of Reducing Land Fragmentation in Land Consolidation at West Roztocze at the Slope Scale. Journal of Ecological Engineering, 22(1), 240–248.
http://dx.doi.org/10.12911/22998993/129580 - Runowski, H. (2019). Digitalization in Agriculture – Development Opportunities and Barriers. In J. Paliszkiewicz (Ed.), Management and Information Technology: New Challenges (pp. 233–246). Warsaw: Warsaw University of Life Sciences Press.
- Runowski, H., & Kramarz, P. (2025). Trust in Artificial Intelligence in Agriculture. In J. Paliszkiewicz, & J. Gołuchowski (Eds.), Trust and Artificial Intelligence: Development and Application of AI Technology (pp. 229–241). New York: Routledge.
http://dx.doi.org/10.4324/9781032627236-21 - Singh, A. K, Balabaygloo, B. J., Bekee, B., Blair, S. W., Fey, S., Fotouhi, F., … Valdivia, C. (2024). Smart Connected Farms and Networked Farmers to Improve Crop Production, Sustainability and Profitability. Front. Agron., 6, 1–18. doi:
https://doi.org/10.3389/fagro.2024.1410829 - Singh, N. K., Sunitha, N. H., Tripathi, G., Saikanth, D. R. K., Sharma, A., Jose, A. E., & Karuna Jeba Mary, M. V. (2023). Impact of Digital Technologies in Agricultural Extension. Asian Journal of Agricultural Extension, Economics & Sociology, 41(9), 963–970.
http://dx.doi.org/10.9734/AJAEES/2023/v41i92127 - Shilomboleni, H., Pelletier, B., & Gebru, B. (2020). ICT 4 Scale in Smallholder Agriculture: Contributions and Challenges. Information Technologies & International Development, 16, 47–65.
- Sridevy, S., & Djanaguiraman, M. (2023). A Glance at Agricultural Decision Support Systems. The Pharma Innovation Journal, 12(5), 755–757.
- Szymańska, E. (2021). Zmiany w Powierzchni Gospodarstw Rolnych w Polsce w Latach 2010–2018 [Changes in the Agrarian Structure of the Polish Countryside in the Years 1918–2018]. Zeszyty Wiejskie, 27, 31–58.
http://dx.doi.org/10.18778/1506-6541.27.02 - Stępień, S., Smędzik-Ambroży, K., Matuszczak, A., & Tošović-Stevanović. A. (2022). Small-Scale Farms in the Environmental Sustainability of Rural Areas. Opinions of Farmers from Poland, Romania and Lithuania. Economics and Environment, 9, 168–185.
http://dx.doi.org/10.34659/eis.2022.81.2.450 - Stępień, S., Smędzik-Ambroży, K., Polcyn, J., Kwiliński, A., & Maican, I. (2023). Are Small Farms Sustainable and Technologically Smart? Evidence from Poland, Romania, and Lithuania. Central European Economic Journal, 10(57), 116–132.
http://dx.doi.org/10.2478/ceej-2023-0007 - Subejo, Untari, D. W., Wati, R. I., & Mewasdinta, G. (2019). Modernization of Agriculture and Use of Information and Communication Technologies by Farmers by Costal Yogyakarta. Indonesian Journal of Geography, 51, 332–345.
http://dx.doi.org/10.22146/ijg.41706 - Tomaszewska, W. (2013). Dostęp do Technologii Informacyjno-Komunikacyjnych w Społeczeństwie Informacyjnym. Przykład Polskich Regionów. [The Access to Information and Communication Technologies in the Information Society. The Example of Polish Regions]. Acta Universitatis Lodziensis, Folia Oeconomica, 290, 23–37.
- Trendov, N. M., Varas, S., & Zeng, M. (2019). Digital technologies in agriculture and rural areas. Briefing paper. Food and Agriculture Organization of the United Nations, Rome.
- Wang, B., & Dong, H. (2023). Research on the Farmers’ Agricultural Digital Service Use Behavior Under the Rural Revitalization Strategy—Based on the Extended Technology Acceptance Model. Frontiers in Environmental Science, 11:1180072.
https://doi.org/10.3389/fenvs.2023.1180072 . - Wayessa, B. G. (2017). The Role of Farmers to Farmers Knowledge Sharing in Improved Sesame Technology Adoption in Case of Meisso District West Hararghe Zone. Journal of Poverty, Investment and Development, 39, 13–21.
- Wójtowicz, A., Pasternak, M., Zacharczuk, M., & Mroczek, M. (2016). Systemy Wspomagające Podejmowanie Decyzji w Ochronie Roślin – Wyzwanie Dla Nauki i Doradztwa Rolniczego [Decision Support Systems in Plant Protection – The Challenges for Science and Extension Service]. Zagadnienia Doradztwa Rolniczego, 1, 62–75.
- Yadav, A. L., Khare, S., & Talwandi, N. S. (2024). Cloud-Based Agricultural Monitoring System for Precision Farming. Retrieved from
https://www.researchgate.net/publication/380587749_Cloud-Based_Agricultural_Monitoring_System_for_Precision_Farming . - Zhai, Z., Martínez, J. F., Beltran, V., & Martínez, N. L. (2020). Decision Support Systems for Agriculture 4.0: Survey and Challenges. Computers and Electronics in Agriculture, 170, 1–16.
http://dx.doi.org/10.1016/j.compag.2020.105256
