Have a personal or library account? Click to login
Chasing Returns of Open-End Investment Funds Using Recurrent Neural Networks. A Long-Term Study Cover

Chasing Returns of Open-End Investment Funds Using Recurrent Neural Networks. A Long-Term Study

Open Access
|Feb 2025

References

  1. Anish, C. M., & Majhi, B. (2016). An Ensemble Model for Net Asset Value Prediction. 2015 IEEE Power, Communication and Information Technology Conference, PCITC 2015 - Proceedings, 392–396. https://doi.org/10.1109/PCITC.2015.7438197
  2. Anish, C. M., Majhi, B., & Majhi, R. (2018). A Novel Hybrid Model Using RBF and PSO for Net Asset Value Prediction. In S. Dash, B. Tripathy, & A. Rahman (Eds.), Handbook of Research on Modeling, Analysis, and Application of Nature-Inspired Metaheuristic Algorithms (pp. 54–72). IGI Global. https://doi.org/10.4018/978-1-5225-2857-9.CH003
  3. Barras, L., Scaillet, O., & Wermers, R. (2010). False Discoveries in Mutual Fund Performance: Measuring Luck in Estimated Alphas. Journal of Finance, 65(1), 179–216. https://doi.org/10.1111/j.1540-6261.2009.01527.x
  4. Basu, A. K., & Huang-Jones, J. (2015). The Performance of Diversified Emerging Market Equity Funds. Journal of International Financial Markets, Institutions and Money, 35, 116–131. https://doi.org/10.1016/j.intfin.2015.01.002
  5. Berk, J. B., & Green, R. C. (2004). Mutual Fund Flows and Performance in Rational Markets. Journal of Political Economy, 112(6), 1269–1295. https://doi.org/10.1086/424739
  6. Bhattacharya, U., Hackethal, A., Kaesler, S., Loos, B., & Meyer, S. (2012). Is Unbiased Financial Advice to Retail Investors Sufficient? Answers from a Large Field Study. Review of Financial Studies, 25(4), 975–1032. https://doi.org/10.1093/RFS/HHR127
  7. Bialkowski, J., Otten, R., Bialkowski, J., & Otten, R. (2011). Emerging Market Mutual Fund Performance: Evidence for Poland. The North American Journal of Economics and Finance, 22(2), 118–130. https://doi.org/10.1016/j.najef.2010.11.001
  8. Bianchi, M. (2018). Financial Literacy and Portfolio Dynamics. Journal of Finance, 73(2), 831–859. https://doi.org/10.1111/jofi.12605
  9. Bóta, G., & Ormos, M. (2016). Is There a Local Advantage for Mutual Funds That Invest in Eastern Europe? Eastern European Economics, 54(1), 23–48. https://doi.org/10.1080/00128775.2015.1120161
  10. Brown, S. J., & Goetzmann, W. N. (1995). Performance Persistence. Journal of Finance, 50(2), 679–698. https://doi.org/10.1111/j.1540-6261.1995.tb04800.x
  11. Carhart, M. M. (1997). On Persistence in Mutual Fund Performance. Journal of Finance, 52(1), 57–82. https://doi.org/10.1111/j.1540-6261.1997.tb03808.x
  12. Chiang, W. C., Urban, T. L., & Baldridge, G. W. (1996). A Neural Network Approach to Mutual Fund Net Asset Value Forecasting. Omega, 24(2), 205–215. https://doi.org/10.1016/0305-0483(95)00059-3
  13. Cremers, K. J. M., & Petajisto, A. (2009). How Active Is Your Fund Manager? A New Measure That Predicts Performance. Review of Financial Studies, 22(9), 3329–3365. https://doi.org/10.1093/rfs/hhp057
  14. Cuthbertson, K., Nitzsche, D., & O’Sullivan, N. (2008). UK Mutual Fund Performance: Skill or Luck? Journal of Empirical Finance, 15(4), 613–634. https://doi.org/10.1016/j.jempfin.2007.09.005
  15. Cuthbertson, K., Nitzsche, D., & O’Sullivan, N. (2022). Mutual Fund Performance Persistence: Factor Models and Portfolio Aize. International Review of Financial Analysis, 81, 102133. https://doi.org/10.1016/J.IRFA.2022.102133
  16. Cuthbertson, K., Nitzsche, D., & O’Sullivan, N. (2023). UK Mutual Funds: Performance Persistence and Portfolio Size. Journal of Asset Management, 24, 284–298. https://doi.org/10.1057/s41260-023-00310-7
  17. Czekaj, J., & Grotowski, M. (2014). Krótkoterminowa persystencja wyników osiąganych przez fundusze akcyjne działające na polskim rynku kapitałowym [Short-term Persistence of the Results Achieved by Equity Funds Operating on the Polish Capital Market]. Ekonomista, 2014(4), 545–557. https://ekonomista.pte.pl/Krotkoterminowa-persystencja-wynikow-osiaganych-przez-fundusze-akcyjne-dzialajace,155694,0,1.html
  18. Das, S. R., Mishra, D., Parhi, P., & Debata, P. P. (2020). Mutual Fund Investment Method Using Recurrent Back Propagation Neural Network. Lecture Notes in Networks and Systems, 109, 330–337. https://doi.org/10.1007/978-981-15-2774-6_40
  19. DeMiguel, V., Gil-Bazo, J., Nogales, F. J., & Santos, A. A. P. (2023). Machine Learning and Fund Characteristics Help to Select Mutual Funds with Positive Alpha. Journal of Financial Economics, 150(3), 103737. https://doi.org/10.1016/J.JFINECO.2023.103737
  20. Dumitrescu, A., & Gil-Bazo, J. (2018). Market Frictions, Investor Sophistication, and Persistence in Mutual Fund Performance. Journal of Financial Markets, 40, 40–59. https://doi.org/10.1016/j.finmar.2018.01.001
  21. Elton, E. J., Gruber, M. J., & Blake, C. R. (1996). The Persistence of Risk-adjusted Mutual Fund Performance. Journal of Business, 69(2), 133–157. https://doi.org/10.1086/209685
  22. Fama, E. F., & French, K. R. (2010). Luck Versus Skill in the Cross-section of Mutual Fund Returns. Journal of Finance, 65(5), 1915–1947. https://doi.org/10.1111/j.1540-6261.2010.01598.x
  23. Ferreira, M. A., Keswani, A., Miguel, A. F., & Ramos, S. B. (2013). The Determinants of Mutual Fund Performance: A Cross-country Study. Review of Finance, 17(2), 483–525. https://doi.org/10.1093/rof/rfs013
  24. Filip, D. (2017). The Return Variability and Dispersion: Evidence from Mutual Funds in Post-Transition Countries. Financial Assets and Investing, 8(1), 19–39. https://doi.org/10.5817/FAI2017-1-2
  25. Filip, D., & Rogala, T. (2021). Analysis of Polish Mutual Funds Performance: A Markovian Approach. Statistics in Transition New Series, 22(1), 115–130. https://doi.org/10.21307/STATTRANS-2021-006
  26. Foerster, S., Linnainmaa, J. T., Melzer, B. T., & Previtero, A. (2017). Retail Financial Advice: Does One Size Fit All? Journal of Finance, 72(4), 1441–1482. https://doi.org/10.1111/JOFI.12514
  27. Fraś, A. (2018). The Relation Between Management Fees and the Mutual Funds' Performance in Poland in 2015. Oeconomia Copernicana, 9(2), 245–259. https://doi.org/10.24136/OC.2018.013
  28. Gandhmal, D. P., & Kumar, K. (2019). Systematic Analysis and Review of Stock Market Prediction Techniques. Computer Science Review, 34, 100190. https://doi.org/10.1016/j.cosrev.2019.08.001
  29. Gil-Bazo, J., & Ruiz-Verdu, P. (2009). The Relation Between Price and Performance in the Mutual Fund Industry. Journal of Finance, 64(5), 2153–2183. https://doi.org/10.1111/j.1540-6261.2009.01497.x
  30. Glode, V. (2011). Why Mutual Funds “Underperform”. Journal of Financial Economics, 99(3), 546–559. https://doi.org/10.1016/j.jfineco.2010.10.008
  31. Grinblatt, M., & Titman, S. (1989). Mutual Fund Performance: An Analysis of Quarterly Portfolio Holdings. The Journal of Business, 62(3), 393. https://doi.org/10.1086/296468
  32. Gruber, M. J. (1996). Another Puzzle: The Growth in Actively Managed Mutual Funds. Journal of Finance, 51(3), 783–810. https://doi.org/10.1111/j.1540-6261.1996.tb02707.x
  33. Gu, S., Kelly, B., & Xiu, D. (2020). Empirical Asset Pricing via Machine Learning. The Review of Financial Studies, 33(5), 2223–2273. https://doi.org/https://doi.org/10.1093/rfs/hhaa009
  34. Han, S. Z., Huang, L. H., Zhou, Y. Y., & Liu, Z. L. (2018). Mixed Chaotic FOA with GRNN to Construction of a Mutual Fund Forecasting Model. Cognitive Systems Research, 52, 380–386. https://doi.org/10.1016/j.cogsys.2018.07.006
  35. Hendricks, D., Patel, J., & Zeckhauser, R. (1993). Hot Hands in Mutual Funds: Short-Run Persistence of Relative Performance, 1974-1988. Journal of Finance, 48(1), 93. https://doi.org/10.2307/2328883
  36. Hwang, S., & Satchell, S. E. (2010). How Loss Averse are Investors in Financial Markets? Journal of Banking & Finance, 34(10), 2425–2438. https://ideas.repec.org/a/eee/jbfina/v34y2010i10p2425-2438.html
  37. Indro, D. C., Jiang, C. X., Patuwo, B. E., & Zhang, G. P. (1999). Predicting Mutual Fund Performance Using Artificial Neural Networks. Omega, 27(3), 373–380. https://doi.org/10.1016/S0305-0483(98)00048-6
  38. Investment Company Institute. (2024). 2024 Investment Company Fact Book. https://www.icifactbook.org/
  39. Jensen, M. C. (1969). Risk, The Pricing of Capital Assets, and The Evaluation of Investment Portfolios. The Journal of Business, 42(2), 167–247. https://doi.org/10.1086/295182
  40. Jiang, J., Liao, L., Wang, Z., & Xiang, H. (2020). Financial Literacy and Retail Investors’ Financial Welfare: Evidence from Mutual Fund Investment Outcomes in China. Pacific Basin Finance Journal, 59, 101242. https://doi.org/10.1016/j.pacfin.2019.101242
  41. Kacperczyk, M., Nieuwerburgh, S. Van, & Veldkamp, L. (2014). Time-Varying Fund Manager Skill. Journal of Finance, 69(4), 1455–1484. https://doi.org/10.1111/jofi.12084
  42. Kahneman, D., & Tversky, A. (1979). Prospect Theory: An Analysis of Decision under Risk. Econometrica, 47(2), 263–291. https://econpapers.repec.org/RePEc:ecm:emetrp:v:47:y:1979:i:2:p:263-91
  43. Kaniel, R., Lin, Z., Pelger, M., & Van Nieuwerburgh, S. (2023). Machine Learning the Skill of Mutual Fund Managers. Journal of Financial Economics, 150(1), 94–138. https://doi.org/10.1016/J.JFINECO.2023.07.004
  44. Kosowski, R. (2011). Do Mutual Funds Perform When It Matters Most to Investors? US Mutual Fund Performance and Risk in Recessions and Expansions. Quarterly Journal of Finance, 1(3), 607–664. https://doi.org/10.1142/S2010139211000146
  45. Li, B., & Rossi, A. G. (2020). Selecting Mutual Funds from the Stocks They Hold: A Machine Learning Approach. SSRN Electronic Journal. https://doi.org/10.2139/SSRN.3737667
  46. Lin, H. Sen, Chen, M. L., Tong, C. C., & Dai, J. W. (2007). Using Grey and RBFNN to Predict the Net Asset Value of Single Nation Equity Funds: A Case Study of Taiwan, US, and Japan. Proceedings of 2007 IEEE International Conference on Grey Systems and Intelligent Services, GSIS 2007, 892–897. https://doi.org/10.1109/GSIS.2007.4443402
  47. Linnainmaa, J. T., Melzer, B. T., & Previtero, A. (2021). The Misguided Beliefs of Financial Advisors. Journal of Finance, 76(2), 587–621. https://doi.org/10.1111/jofi.12995
  48. Miziołek, T., & Trzebiński, A. (2018). Rynek funduszy inwestycyjnych w Polsce [The Investment Fund Market in Poland]. CeDeWu
  49. Narula, A., Jha, C. B., & Panda, G. (2015). Development and Performance Evaluation of Three Novel Prediction Models for Mutual Fund NAV Prediction. Annual Research Journal of Symbiosis Centre for Management Studies, 3, 227–238.
  50. Olah, C. (2015). Understanding LSTM Networks. https://colah.github.io/posts/2015-08-Understanding-LSTMs/
  51. Pan, W. T., Han, S. Z., Yang, H. L., & Chen, X. Y. (2019). Prediction of Mutual Fund Net Value Based on Data Mining Model. Cluster Computing, 22, 9455–9460. https://doi.org/10.1007/s10586-018-2272-2
  52. Perez, K. (2012). Persystencja stóp zwrotu polskich funduszy inwestycyjnych [Persistence of Returns of Polish Investment Funds]. Finanse: Czasopismo Komitetu Nauk o Finansach PAN, nr 1(5), 81–113.
  53. Perez, K. (2014). Polish Absolute Return Funds and Stock Funds. Short and Long Term Performance Comparison. Folia Oeconomica Stetinensia, 14(2), 179–197. https://doi.org/10.1515/FOLI-2015-0016
  54. Perez, K., & Szczyt, M. (2021). Classification of Open-End Investment Funds Using Artificial Neural Networks. The Case of Polish Equity Funds. Central European Economic Journal, 8(55), 269–284. https://doi.org/10.2478/CEEJ-2021-0020
  55. Perez, K., & Szymczyk, Ł. (2022). Actual Rate of the Management Fee in Mutual Funds of Different Styles. Equilibrium. Quarterly Journal of Economics and Economic Policy, 17(4), 969–1014. https://doi.org/10.24136/EQ.2022.033
  56. Priyadarshini, E. (2015). A Comparative Analysis of Prediction Using Artificial Neural Network and Autoregressive Integrated Moving Average. ARPN Journal of Engineering and Applied Science, 10(7), 3078–3081.
  57. Priyadarshini, E., & Babu, A. C. (2012). A Comparative Analysis for Forecasting the NAV’s of Indian Mutual Fund using Multiple Regression Analysis and Artificial Neural Networks. International Journal of Trade, Economics and Finance, 3(5), 347–350. https://doi.org/10.7763/ijtef.2012.v3.225
  58. Ray, P., & Vina, V. (2005). Neural Network Models for Forecasting Mutual Fund Net Asset Value. 8th Capital Markets Conference, Indian Institute of Capital Markets Paper, 1–18. https://doi.org/10.2139/SSRN.872269
  59. Rout, M., Koudjonou, K. M., & Satapathy, S. C. (2020). Analysis of Net Asset Value Prediction Using Low Complexity Neural Network with Various Expansion Techniques. Evolutionary Intelligence, 0123456789. https://doi.org/10.1007/s12065-020-00365-0
  60. Wang, K., & Huang, S. (2010). Using Fast Adaptive Neural Network Classifier for Mutual Fund Performance Evaluation. Expert Systems with Applications, 37(8), 6007–6011. https://doi.org/10.1016/j.eswa.2010.02.003
  61. Xie, Y., Hwang, S., & Pantelous, A. A. (2018). Loss Aversion Around the World: Empirical Evidence from Pension Funds. Journal of Banking and Finance, 88, 52–62. https://doi.org/10.1016/j.jbankfin.2017.11.007
  62. Yan, H., Liu, W., Liu, X., Kong, H., & Lv, C. (2010). Predicting Net Asset Value of Investment Fund Based on BP Neural Network. ICCASM 2010 - 2010 International Conference on Computer Application and System Modeling, Proceedings, 10. https://doi.org/10.1109/ICCASM.2010.5622625
  63. Zamojska, A. (2012). Efektywność funduszy inwestycyjnych w Polsce. Studium teoretyczno-empiryczne [The Effectiveness of Investment Funds in Poland: A Theoretical-Empirical Study]. C.H. Beck
DOI: https://doi.org/10.2478/ceej-2025-0004 | Journal eISSN: 2543-6821 | Journal ISSN: 2544-9001
Language: English
Page range: 49 - 65
Published on: Feb 14, 2025
Published by: Faculty of Economic Sciences, University of Warsaw
In partnership with: Paradigm Publishing Services
Publication frequency: 1 issue per year

© 2025 Katarzyna Perez, Marcin Bartkowiak, published by Faculty of Economic Sciences, University of Warsaw
This work is licensed under the Creative Commons Attribution 4.0 License.