Have a personal or library account? Click to login
Predicting the Amount of Compensation for Harm Awarded by Courts Using Machine-Learning Algorithms Cover

Predicting the Amount of Compensation for Harm Awarded by Courts Using Machine-Learning Algorithms

Open Access
|May 2024

References

  1. Adadi, A., & Berrada, M. (2018). Peeking Inside the Black-Box: A Survey on Explainable Artificial Intelligence (XAI). IEEE Access, 6, 52138–52160. https://doi.org/10.1109/ACCESS.2018.2870052
  2. Aletras, N., Tsarapatsanis, D., Preoţiuc-Pietro, D., & Lampos, V. (2016). Predicting Judicial Decisions of the European Court of Human Rights: A Natural Language Processing Perspective. PeerJ Computer Science, 2, e93. https://doi.org/10.7717/peerj-cs.93
  3. Alshboul, O., Alzubaidi, M. A., Mamlook, R. E. A., Almasabha, G., Almuflih, A. S., & Shehadeh, A. (2022a). Forecasting Liquidated Damages via Machine Learning-Based Modified Regression Models for Highway Construction Projects. Sustainability, 14(10), 5835. https://doi.org/10.3390/su14105835
  4. Alshboul, O., Shehadeh, A., Mamlook, R. E. A., Almasabha, G., Almuflih, A. S., & Alghamdi, S. Y. (2022b). Prediction Liquidated Damages via Ensemble Machine Learning Model: Towards Sustainable Highway Construction Projects. Sustainability, 14(15), 9303. https://doi.org/10.3390/su14159303
  5. Andrych-Brzezińska, I. (2020). Punitive damages: Czyli o odszkodowaniu karnym w prawie amerykańskim oraz Europejskiej Debacie na temat funkcji odpowiedzialności odszkodowawczej. Transformacje Prawa Prywatnego, 4, 5–54. https://journals.law.uj.edu.pl/TPP/article/view/519/252
  6. Arrieta, A. B., Díaz-Rodríguez, N., Del Ser, J., Bennetot, A., Tabik, S., Barbado, A., … Herrera, F. (2020). Explainable Artificial Intelligence (XAI): Concepts, Taxonomies, Opportunities and challenges Toward Responsible AI. Information Fusion, 58, 82–115. https://doi.org/10.1016/j.inffus.2019.12.012
  7. Balagopalan, A., Eyre, B., Rudzicz, F., and Novikova, J. (2020). To BERT or Not To BERT: Comparing Speech and Language-based Approaches for Alzheimer‘s Disease Detection. arXiv preprint. https://doi.org/10.48550/arXiv.2008.01551
  8. Balcerowicz, L. (2005). Post-COmmunist Transition: Some Lessons. IEA Occasional Paper, 127. https://papers.ssrn.com/sol3/papers.cfm?abstract_id=676661
  9. Bełdowski, J., Dąbroś, Ł., & Wojciechowski, W. (2020). Judges and Court Performance: A Case Study of District Commercial Courts in Poland. European Journal of Law and Economics, 50, 171–201. https://doi.org/10.1007/s10657-020-09656-4
  10. Breiman, L. (2001). Random Forests Machine Learning, 45, 5–32. https://doi.org/10.1023/A:1010933404324
  11. Breiman, L., Friedman, J. H., Olshen, R. A. & Stone, C. J. (1984). Classification and Regression Trees. Chapman & Hall/CRC. https://doi.org/10.1201/9781315139470
  12. Brzozowski, A. (2021). In A. Brzozowski, J. Jastrzębski, M. Kaliński, E. Skowrońska-Bocian (Eds.). Zobowiązania: Część ogólna (4th ed.), Wolters Kluwer.
  13. Chen, T., He, T., Benesty, M., Khotilovich, V., Tang, Y., Cho, H., ... & Zhou, T. (2015). Xgboost: Extreme gradient boosting (R package version 0.4-2) [Computer software]. https://cran.ms.unimelb.edu.au/web/packages/xgboost/index.html
  14. Chlebus, M., Dyczko, M., & Woźniak, M. (2021). Nvidia‘s Stock Returns Prediction Using Machine Learning Techniques for Time Series Forecasting Problem. Central European Economic Journal, 8(55), 44–62, https://doi.org/10.2478/ceej-2021-0004
  15. Contini, F. (2020). Artificial intelligence and the transformation of humans and technology interactions in judicial proceedings. Law, Technology and Humans, 2(1), 4–18, https://doi.org/10.5204/lthj.v2i1.1478
  16. Cui, J., Shen, X., & Wen, S. (2023). A Survey on Legal Judgment Prediction: Datasets, Metrics, Models and Challenges. IEEE Access, 11, 102050–102071. https://doi.org/10.1109/ACCESS.2023.3317083
  17. Dal Pont, T. R., Sabo, I. C., Hübner, J. F., & Rover, A. J. (2023). Regression Applied to Legal Judgments to Predict Compensation for Immaterial Damage. PeerJ Computer Science, 9, e1225. https://doi.org/10.7717/peerj-cs.1225
  18. Devlin, J., Chang, M. W., Lee, K., & Toutanova, K. (2018). BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding. arXiv preprint. https://doi.org/10.48550/arXiv.1810.04805
  19. Eisenberg, T., Eisenberg, T., Wells, M. T., & Zhang, M. (2015). Addressing the Zeros Problem: Regression Models for Outcomes With a Large Proportion of Zeros, With an Application to Trial Outcomes. Journal of Empirical Legal Studies, 12(1), 161–186, https://doi.org/10.1111/jels.12068
  20. Eisenberg, T., Hannaford-Agor, P. L., Heise, M., LaFountain, N., Munsterman, G. T., Ostrom, B., & Wells, M. T. (2006). Juries, Judges, Juries, and Punitive Damages: Empirical Analyses Using the Civil Justice Survey of State Courts 1992, 1996, and 2001 Data. Journal of Empirical Legal Studies, 3(2), 263–295. https://scholarship.law.cornell.edu/lsrp_papers/30/
  21. Eisenberg, T., Heise, M., Waters, N. L., & Wells, M. T. (2010). The Decision to Award Punitive Damages: An Empirical Study. Journal of Legal Analysis, 2(2), 577–620, https://doi.org/10.1093/jla/2.2.577
  22. Elfron, B. (1979). Bootstrap Methods: Another Look at the Jackknife. The Annals of Statistics, 7(1), 1–26. https://doi.org/10.1214/aos/1176344552
  23. European Commission. (2021). The 2021 EU Justice Scoreboard. Publications Office of the European Union. https://commission.europa.eu/system/files/2021-07/eu_justice_scoreboard_2021.pdf
  24. Friedman, J. H. (2001). Greedy Function Approximation: A Gradient Boosting Machine. The Annals of Statistics, 29(5), 1189–1232. https://www.jstor.org/stable/2699986
  25. Friedman, J., Hastie, T., & Tibshirani, R. (2000). Additive Logistic Regression: a Statistical View of Boosting (With Discussion and a Rejoinder by the Authors). The Annals of Statistics, 28(2), 337–407. https://doi.org/10.1214/aos/1016218223
  26. González-Carvajal, S., & Garrido-Merchán, E. C. (2020). Comparing BERT Against Traditional Machine Learning Text Classification. arXiv preprint. https://doi.org/10.48550/arXiv.2005.13012
  27. Gunning, D., & Aha, D. (2019). DARPA‘s Explainable Artificial Intelligence Program. AI Magazine, 40(2), 44–58. https://doi.org/10.1609/aimag.v40i2.2850
  28. Hastie, T., Tibshirani, R., Friedman, J. H., & Friedman, J. H. (2009). The Elements of Statistical Learning: Data Mining, Inference, and Prediction (Vol. 2, 1–758). Springer.
  29. Hsieh, D., Chen, L., & Sun, T. (2021). Legal Judgment Prediction Based on Machine Learning: Predicting the Discretionary Damages of Mental Suffering in Fatal Car Accident Cases. Applied Sciences, 11(21), 10361. https://doi.org/10.3390/app112110361
  30. Joachims, T. (1997). A Probabilistic Analysis of the Rocchio Algorithm with TFIDF for Text Categorization. In ICML 97, 143–151. https://dl.acm.org/doi/10.5555/645526.657278
  31. Kaliński, M. (2021a). Szkoda na mieniu i jej naprawienie. (3rd ed.). C. H. Beck.
  32. Kaliński, M. (2021b). In Brzozowski, A., J. Jastrzębski, M. Kaliński, & E. Skowrońska-Bocian (Eds.). Zobowiązania: Część ogólna (4th ed., chap. 3, 8). Wolters Kluwer.
  33. Katz, D. M., Bommarito, M. J., & Blackman, J. (2017). A General Approach for Predicting the Behavior of the Supreme Court of the United States. PloS One, 12(4), e0174698. https://doi.org/10.1371/journal.pone.0174698
  34. Kearns, M., & Valiant, L. G. (1989). Crytographic Limitations on Learning Boolean Formulae and Finite Automata. In Proceedings of the Twenty-first Annual ACM Symposium on Theory of Computing (STOC ‘89). (pp. 433–444). Association for Computing Machinery. p. 433–444. https://doi.org/10.1145/73007.73049
  35. Kieraś, W., & Woliński, M. (2017). Morfeusz 2: Analizator i generator fleksyjny dla języka polskiego. Język Polski, 97(1), 75–83. https://www.ceeol.com/search/article-detail?id=528784
  36. Kochanowski, M. (2019). Rozważania na temat represyjnych i prewencyjnych elementów odpowiedzialności odszkodowawczej na przykładzie instytucji odszkodowania karnego (punitive damages) w świetle orzecznictwa Sądu Najwyższego oraz Trybunału Konstytucyjnego. Studia Prawa Publicznego, 1(17), 83–100.
  37. Kruczalak-Jankowska, J., Maśnicka, M., & Machnikowska, A. (2020). The Relation between Duration of Insolvency Proceedings and their Efficiency (with a Particular Emphasis on Polish Experiences). International Insolvency Review, 29(3), 379–392. https://doi.org/10.1002/iir.1392
  38. Kryla-Cudna, K. (2018). Zadośćuczynienie pieniężne za szkodę niemajatkową powstałą wskutek niewykonania lub nienależytego wykonania umowy. C. H. Beck.
  39. Medvedeva, M., Vols, M., & Wieling, M. (2020). Using Machine Learning to Predict Decisions of the European Court of Human Rights. Artificial Intelligence and Law, 28, 237–266. https://doi.org/10.1007/s10506-019-09255-y
  40. Medvedeva, M., Wieling, M., & Vols, M. (2023). Rethinking the Field of Automatic Prediction of Court Decisions. Artificial Intelligence and Law, 31(1), 195–212. https://doi.org/10.1007/s10506-021-09306-3
  41. Mroczkowski, R., Rybak, P., Wróblewska, A., & Gawlik, I. (2021). HerBERT: Efficiently Pretrained Transformer-based Language Model for Polish. arXiv preprint. https://doi.org/10.48550/arXiv.2105.01735
  42. Mumcuoğlu, E., Öztürk, C. E., Ozaktas, H. M., & Koç, A. (2021). Natural Language Processing in Law: Prediction of Outcomes in the Higher Courts of Turkey. Information Processing & Management, 58(5), 102684. https://doi.org/10.1016/j.ipm.2021.102684
  43. Radwański, Z., Olejniczak, A., Grykiel, J. (2022). Zobowiązania: Część ogólna (15th ed.). C. H. Beck.
  44. Safjan, M. (2020). Art. 445 [Zadośćuczynienie pieniężne]. In Pietrzykowski, K. (Ed.). Kodeks cywilny: Komentarz Art. 1-44910., (10th ed., Vol. 1). C. H. Beck.
  45. Said, G., Azamat, K., Ravshan, S., & Bokhadir, A. (2023). Adapting Legal Systems to the Development of Artificial Intelligence: Solving the Global Problem of AI in Judicial Processes. International Journal of Cyber Law, 1(4). https://irshadjournals.com/index.php/ijcl/article/view/49
  46. Shapley, L. S. (1952). A Value for N-Person Games. RAND Corporation https://www.rand.org/pubs/papers/P295.html
  47. Strickson, B., & De La Iglesia, B. (2020, March). Legal Judgement Prediction for UK Courts. In Proceedings of the 3rd International Conference on Information Science and Systems (pp. 204–209). https://doi.org/10.1145/3388176.3388183
  48. Sulea, O. M., Zampieri, M., Vela, M., & Van Genabith, J. (2017). Predicting the Law Area and Decisions of French Supreme Court Cases. arXiv preprint. https://doi.org/10.48550/arXiv.1708.01681
  49. Tibshirani, R. (1996). Regression Shrinkage and Selection Via the Lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology, 58(1), 267–288. https://doi.org/10.1111/j.2517-6161.1996.tb02080.x
  50. Torres, G. D. O., Guterres, M. X., & Celestino, V. R. R. (2023). Legal Actions in Brazilian Air Transport: A Machine Learning and Multinomial Logistic Regression Analysis. Frontiers in Future Transportation, 4, 1070533. https://doi.org/10.3389/ffutr.2023.1070533
  51. Valvoda, J., Cotterell, R., & Teufel, S. (2023). On the Role of Negative Precedent in Legal Outcome Prediction. Transactions of the Association for Computational Linguistics, 11, 34–48. https://doi.org/10.1162/tacl_a_00532
  52. Virtucio, M. B. L., Aborot, J. A., Abonita, J. K. C., Avinante, R. S., Copino, R. J. B., Neverida, M. P., ... & Tan, G. B. A. (2018). Predicting Decisions of the Philippine Supreme Court Using Natural Language Processing and Machine Learning. In 2018 IEEE 42nd Annual Computer Software and Applications Conference (COMPSAC). (Vol. 2, 130–135. IEEE. https://doi.org/10.1109/COMPSAC.2018.10348
  53. Waltl, B., Bonczek, G., Scepankova, E., Landthaler, J., & Matthes, F. (2017). Predicting the Outcome of Appeal Decisions in Germany’s Tax Law. In Electronic Participation: 9th IFIP WG 8.5 International Conference, ePart 2017, St. Petersburg, Russia, September 4–7, 2017, Proceedings, 9, 89–99. Springer. https://doi.org/10.1007/978-3-319-64322-9_8
  54. Wołodkiewicz, W., & Zabłocka, M. (2014). Prawo rzymskie: Instytucje. (6th ed., chap. 1). C. H. Beck.
  55. Xu, Z. (2022). Human Judges in the Era of Artificial Intelligence: Challenges and Opportunities. Applied Artificial Intelligence, 36(1). https://doi.org/10.1080/08839514.2021.2013652
  56. Yeung, C. M. (2019). Effects of Inserting Domain Vocabulary and Fine-Tuning BERT for German Legal Language (Master’s thesis, University of Twente). https://essay.utwente.nl/80128/
DOI: https://doi.org/10.2478/ceej-2024-0015 | Journal eISSN: 2543-6821 | Journal ISSN: 2544-9001
Language: English
Page range: 214 - 232
Published on: May 26, 2024
Published by: Sciendo
In partnership with: Paradigm Publishing Services
Publication frequency: 1 times per year

© 2024 Maciej Świtała, published by Sciendo
This work is licensed under the Creative Commons Attribution 4.0 License.