Have a personal or library account? Click to login
Combining forecasts? Keep it simple Cover
By: Szymon LisORCID and  Marcin ChlebusORCID  
Open Access
|Oct 2023

References

  1. Andreani, M., Candila, V., & Petrella, L. (2022). Quantile Regression Forest for Value-at-Risk Forecasting Via Mixed-Frequency Data. In Mathematical and Statistical Methods for Actuarial Sciences and Finance: MAF 2022 (pp. 13–18). Cham: Springer International Publishing. http://doi.org/10.1007/978-3-030-99638-3
  2. Angabini, A., Wasiuzzaman, S. (2011). GARCH Models and the Financial Crisis: A Study of the Malaysian. The International Journal of Applied Economics and Finance, 5(3), 226–236. https://doi.org/10.3923/ijaef.2011.226.236
  3. Armstrong, J. S. (1989). Combining forecasts: The end of the beginning or the beginning of the end? International Journal of Forecasting, 5(4), 585–588. https://doi.org/10.1016/0169-2070(89)90013-7
  4. Aziz, S., & Dowling, M. (2019). Machine learning and AI for risk management. Disrupting finance: FinTech and strategy in the 21st century, 33–50.
  5. Basel Committee. (1996). Overview of the Amendment to the Capital Accord to Incorporate Market Risks. Discussion Paper, Basel Committee on Banking Supervision.
  6. Bayer, S. (2018). Combining value-at-risk forecasts using penalized quantile regressions. Econometrics and statistics, 8, 56–77. https://doi.org/10.1016/j.ecosta.2017.08.001
  7. BCBS (1996). Supervisory Framework for the Use of ‘Backtesting’ in Conjunction with the Internal Models Approach to Market Risk Capital Requirements.
  8. BCBS (2010). The Basel III Capital Framework: A Decisive Breakthrough. Speech by Hervé Hannoun at BoJ-BIS High Level Seminar on Financial Regulatory Reform: Implications for Asia and the Pacific, Hong Kong SAR.
  9. Bernardi, M., Catania, L. (2016). Comparison of Value-at-Risk models using the MCS approach. Computational Statistics, 31(2), 579–608. https://doi.org/10.1007/s00180-016-0646-6
  10. Bhowmik, R., & Wang, S. (2020). Stock market volatility and return analysis: A systematic literature review. Entropy, 22(5), 522. https://doi.org/10.3390/e22050522
  11. Bollerslev, T. (1986). Generalized autoregressive conditional heteroscedasticity. Journal of Econometrics. 31(3), 307–327. https://doi.org/10.1016/0304-4076(86)90063-1
  12. Bollerslev, T. (1987). Conditionally heteroskedastic time series model for speculative prices and rates of return. The Review of Economics and Statistics, 69(3), 542–547. https://doi.org/10.2307/1925546
  13. Bollerslev, T., Woolridge, J. M. (1992). Quasi-maximum likelihood estimation and inference in dynamic models with time-varying covariances Econometric Reviews 11. https://doi.org/10.1080/07474939208800229
  14. Buczyński, M., Chlebus, M. (2018). Comparison of semi-parametric and benchmark value-at-risk models in several time periods with different volatility levels. e-Finanse: Financial Internet Quarterly, 14(2), 67–82. https://doi.org/10.2478/fiqf-2018-0013
  15. Buczyński, M., & Chlebus, M. (2019). Old-fashioned parametric models are still the best: a comparison of value-at-risk approaches in several volatility states. Journal of Risk Model Validation, 14(2).
  16. Caillault, É. P., Lefebvre, A., and Bigand, A. (2017). Dynamic time warping-based imputation for univariate time series data. Pattern Recognition Letters. https://doi.org/10.1016/j.patrec.2017.08.019
  17. Cannon, A. J. (2010). A flexible nonlinear modelling framework for nonstationary generalized extreme value analysis in hydroclimatology. Hydrological Processes: An International Journal, 24(6), 673–685. https://doi.org/10.1002/hyp.7506
  18. Cannon, A. J. (2011). Quantile regression neural networks: Implementation in R and application to precipitation downscaling. Computers & Geosciences, 37(9), 1277–1284. https://doi.org/10.1016/j.cageo.2010.07.005
  19. Christoffersen, P. (1998). Evaluating interval forecasts. International Economic Review, 39(4), 841–862. https://doi.org/10.2307/2527341
  20. Clemen, R. T., Winkler, R. L. (1986). Combining economic forecasts. Journal of Business & Economic Statistics, 4(1), 39–46. https://doi.org/10.2307/1391385
  21. Danielsson, J. (2013). The new market-risk regulations. VoxEU.
  22. Danielsson, J., Morimoto, Y. (2000). Forecasting extreme financial risk: A critical analysis of practical methods for the Japanese market. Institute for Monetary and Economic Studies, Bank of Japan.
  23. Dudziński, J. (2016). Ceny w handlu międzynarodowym w drugiej dekadzie XXI wieku. Kierunki zmian i ich czynniki. International Business and Global Economy, 35(2), 249–260. https://doi.org/10.4467/23539496IB.16.061.5642
  24. Duffie, D., Pan, J. (1997). An overview of value at risk. Journal of Derivatives, 4(3), 7–49. http://doi.org/10.3905/jod.1997.407971
  25. Engle, R. F., Manganelli, S. (2004). CAViaR: Conditional Autoregressive Value at Risk by Regression Quantiles. Journal of Business & Economic Statistics, 22(4), 367–381. http://doi.org/10.1198/073500104000000370
  26. Fameliti, S. P., & Skintzi, V. D. (2020). Predictive ability and economic gains from volatility forecast combinations. Journal of Forecasting, 39(2), 200–219. http://doi.org/10.1002/for.2622
  27. Friedman, J. H. (2001). Greedy function approximation: a gradient boosting machine. Annals of Statistics, 1189–1232. http://dx.doi.org/10.1214/aos/1013203451
  28. Gençay, R., Selçuk, F., Ulugülyaǧci, A. (2003). High volatility, thick tails and extreme value theory in value-at-risk estimation. Insurance: Mathematics and Economics, 33(2), 337–356. http://dx.doi.org/10.1016/j.insmatheco.2003.07.004
  29. Giacomini, R., Komunjer, I. (2005). Evaluation and combination of conditional quantile forecasts. Journal of Business and Economic Statistics, 23(4), 416–431. http://doi.org/10.1198/073500105000000018
  30. Grömping, U. (2009). Variable importance assessment in regression: linear regression versus random forest. The American Statistician, 63(4), 308–319. https://doi.org/10.1198/tast.2009.08199
  31. Halbleib, R., Pohlmeier, W. (2012). Improving the value at risk forecasts: Theory and evidence from the financial crisis. Journal of Economic Dynamics and Control, 36(8), 1212–1228. https://doi.org/10.1016/j.jedc.2011.10.005
  32. Hansen, P. R., Lunde, A., Nason, J. M. (2011). The model confidence set. Econometrica, 79(2), 453–497. https://doi.org/10.3982/ECTA5771
  33. Holthausen, D. M., Hughes, J. S. (1978). Commodity returns and capital asset pricing. Financial Management, 37–44. https://doi.org/10.1177/0972262912460186
  34. Huang, H., Lee, T. H. (2013). Forecasting value-at-risk using high-frequency information. Econometrics, 1(1), 127–140. https://doi.org/10.3390/econometrics1010127
  35. Ichev, R., Marinč, M. (2018). Stock prices and geographic proximity of information: Evidence from the Ebola outbreak. International Review of Financial Analysis, 56, 153–166. https://doi.org/10.1016/j.irfa.2017.12.004
  36. Jeon, J., Taylor, J. W. (2013). Using CAViaR models with implied volatility for Value-at-Risk estimation. Journal of Forecasting, 32(1), 62–74. http://dx.doi.org/10.1002/for.1251
  37. Kupiec, P. (1995). Techniques for verifying the accuracy of risk management models. Journal of Derivatives, 3 (2), 73–84. https://doi.org/10.3905/jod.1995.407942
  38. Laporta, A. G., Merlo, L., & Petrella, L. (2018). Selection of value at risk models for energy commodities. Energy Economics 74, 628–643.
  39. Laurent, S., Rombouts, J. V., & Violante, F. (2012). On the forecasting accuracy of multivariate GARCH models. Journal of Applied Econometrics, 27(6), 934–955. https://doi.org/10.1002/jae.1248
  40. Lyócsa, Š., Todorova, N., & Výrost, T. (2021). Predicting risk in energy markets: low-frequency data still matter. Applied Energy, 282, 116–146.
  41. Mashrur, A., Luo, W., Zaidi, N. A., & Robles-Kelly, A. (2020). Machine learning for financial risk management: a survey. IEEE Access, 8, 203203–203223.
  42. McAleer, M., Jimenez-Martin, J. A., Perez Amaral, T. (2010). Has the Basel II Accord encouraged risk management during the 2008–09 financial crisis? SSRN Electronic Journal, http://dx.doi.org/10.2139/ssrn.1397239
  43. Meinshausen, N., Ridgeway, G. (2006). Quantile regression forests. Journal of Machine Learning Research, 7(6).
  44. Mensi, W., Sensoy, A., Vo, X. V., Kang, S. H. (2020). Impact of COVID-19 outbreak on asymmetric multifractality of gold and oil prices. Resources Policy, 69, 101829. https://doi.org/10.1016%2Fj.resourpol.2020.101829
  45. Phillips, P. C., Yu, J. (2011). Dating the timeline of financial bubbles during the subprime crisis. Quantitative Economics, 2(3), 455–491. http://dx.doi.org/10.3982/QE82
  46. Parot, A., Michell, K., & Kristjanpoller, W. D. (2019). Using Artificial Neural Networks to forecast Exchange Rate, including VAR-VECM residual analysis and prediction linear combination. Intelligent Systems in Accounting, Finance and Management, 26(1), 3–15. https://doi.org/10.1002/isaf.1440
  47. Pradeepkumar, D., & Ravi, V. (2017). Forecasting financial time series volatility using particle swarm optimisation trained quantile regression neural network. Applied Soft Computing, 58, 35–52. https://doi.org/10.1016/j.asoc.2017.04.014
  48. Rundo, F., Trenta, F., di Stallo, A. L., & Battiato, S. (2019). Machine learning for quantitative finance applications: A survey. Applied Sciences, 9(24), 5574.
  49. Stuermer, M., & Valckx, N. (2021). Four Factors Behind the Metals Price Rally. IMF.
  50. Szakmary, A. C., Shen, Q., Sharma, S. C. (2010). Trend-following trading strategies in commodity futures: A re-examination. Journal of Banking & Finance, 34(2), 409–426. http://dx.doi.org/10.1016/j.jbankfin.2009.08.004
  51. Tibshirani, R. (1996). Regression shrinkage and selection via the LASSO. Journal of the Royal Statistical Society: Series B (Methodological), 58(1), 267–288. https://doi.org/10.1111/j.2517-6161.1996.tb02080.x
  52. Taylor, J. W. (2020). Forecast combinations for value at risk and expected shortfall. International Journal of Forecasting, 36(2), 428–441. https://doi.org/10.1016/j.ijforecast.2019.05.014
  53. Terui, N., Van Dijk, H. K. (2002). Combined forecasts from linear and nonlinear time series models. International Journal of Forecasting, 18(3), 421–438. https://doi.org/10.1016/S0169-2070(01)00120-0
  54. Timmermann, A. (2006). Forecast combinations. Handbook of economic forecasting, 1, 135–196. https://doi.org/10.1016/S1574-0706(05)01004-9
  55. Tsay, R. S. (2005). Analysis of Financial Time Series (Vol. 543). John Wiley & Sons.
  56. Tse, Y. (2016). Asymmetric volatility, skewness, and downside risk in different asset classes: Evidence from futures markets. Financial Review, 51(1), 83–111. https://doi.org/10.1111/fire.12095
  57. Wasserbacher, H., & Spindler, M. (2022). Machine learning for financial forecasting, planning and analysis: recent developments and pitfalls. Digital Finance, 4(1), 63–88.
  58. Xiao, D., Su, J., & Ayub, B. (2022). Economic policy uncertainty and commodity market volatility: implications for economic recovery. Environmental Science and Pollution Research, 29(40), 60662–60673.
  59. Youssef, M., Belkacem, L., Mokni, K., 2015. Value-at-Risk estimation of energy commodities: A long-memory GARCH–EVT approach. Energy Economics, 51, 99–110. https://doi.org/10.1016/j.eneco.2015.06.010
DOI: https://doi.org/10.2478/ceej-2023-0020 | Journal eISSN: 2543-6821 | Journal ISSN: 2544-9001
Language: English
Page range: 343 - 370
Published on: Oct 31, 2023
Published by: Faculty of Economic Sciences, University of Warsaw
In partnership with: Paradigm Publishing Services
Publication frequency: 1 issue per year

© 2023 Szymon Lis, Marcin Chlebus, published by Faculty of Economic Sciences, University of Warsaw
This work is licensed under the Creative Commons Attribution 4.0 License.