Have a personal or library account? Click to login
Nvidia's Stock Returns Prediction Using Machine Learning Techniques for Time Series Forecasting Problem Cover

Nvidia's Stock Returns Prediction Using Machine Learning Techniques for Time Series Forecasting Problem

Open Access
|Jan 2021

References

  1. Abazovic, F. (2018). Nvidia stock dropped for the wrong reason. Retrieved from https://www.fudzilla.com/news/ai/47637-nvidia-stock-dropped-for-the-wrong-reason
  2. Abe, M., & Nakayama, H. (2018). Deep learning for forecasting stock returns in the cross-section. Pacific-Asia Conference on Knowledge Discovery and Data Mining. 273–284. https://doi.org/10.1007/978-3-319-93034-3_22
  3. Adebiyi, A. A., Adewumi, A. O., & Ayo, C. K. (2014). Comparison of ARIMA and artificial neural networks models for stock price prediction. Journal of Applied Mathematics 2014. https://doi.org/10.1155/2014/614342
  4. Adhikari, R., Verma, G., & Khandelwal, I. (2015). A model ranking based selective ensemble approach for time series forecasting. Procedia Computer Science, 48, 14–21. https://doi.org/10.1016/j.procs.2015.04.104
  5. Ahmed, F., Asif, R., Hina, S., & Muzammil, M. (2017). Financial market prediction using Google Trends. International Journal of Advanced Computer Science and Applications, 8(7), 388–391. https://doi.org/10.14569/IJACSA.2017.080752
  6. Altman, N. S. (1992). An introduction to kernel and nearest-neighbor nonparametric regression. The American Statistician, 46(3), 175–185. https://doi.org/10.2307/2685209
  7. Beyaz, E., Tekiner, F., Zeng, X. J., & Keane, J. (2018). Stock Price Forecasting Incorporating Market State. 2018 IEEE 20th International Conference on High Performance Computing and Communications. https://doi.org/10.1109/HPCC/SmartCity/DSS.2018.00263
  8. Bontempi, G., Taieb, S., & Borgne, Y. A. (2012). Machine learning strategies for time series forecasting. In European business intelligence summer school (pp. 62–77). Berlin, Germany: Springer. https://doi.org/10.1007/978-3-642-36318-4_3
  9. Box, G., & Jenkins, G. (1970). Time Series Analysis: Forecasting and Control. San Francisco, CA: Holden-Day.
  10. Chen, T., & Guestrin, C. (2016). Xgboost: A scalable tree boosting system. In Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (pp. 785–794). https://doi.org/10.1145/2939672.2939785
  11. Chen, K., Zhou, Y., & Dai, F. (2015). A LSTM-based method for stock returns prediction: A case study of China stock market. In 2015 IEEE International Conference on Big Data (Big Data). https://doi.org/10.1109/bigdata.2015.7364089
  12. Chou, J. S., & Tran, D. S. (2018). Forecasting energy consumption time series using machine learning techniques based on usage patterns of residential householders. Energy, 165, 709–726. https://doi.org/10.1016/j.energy.2018.09.144
  13. Vapnik, V., Drucker, H., Burges, C. J., Kaufman, L., & Smola, A. (1997). Support vector regression machines. Advances in Neural Information Processing Systems, 9, 155–161.
  14. Eassa, A. (2018). Why NVIDIA's Stock Crashed. Retrieved from https://finance.yahoo.com/news/why-nvidia-apos-stock-crashed-122400380.html
  15. Emir, S., Dincer, H., & Timor, M. (2012). A stock selection model based on fundamental and technical analysis variables by using artificial neural networks and support vector machines. Review of Economics & Finance, 2(3), 106–122.
  16. Hatta, A. J. (2012). The company fundamental factors and systematic risk in increasing stock price. Journal of Economics, Business and Accountancy, 15(2), 245–256. http://doi.org/10.14414/jebav.v15i2.78
  17. Hill, J. B., & Motegi, K. (2019). Testing the white noise hypothesis of stock returns. Economic Modelling, 76, 231–242. https://doi.org/10.1016/j.econmod.2018.08.003
  18. Hochreiter, S., & Schmidhuber, J. (1997). Long short-term memory. Neural Computation, 9(8), 1735–1780. https://doi.org/10.1162/neco.1997.9.8.1735
  19. Ke, G., Meng, Q., Finley, T., Wang, T., & Chen, W. (2017). Lightgbm: A highly efficient gradient boosting decision tree. Advances in Neural Information Processing Systems, 30, 3146–3154.
  20. Kozachenko, L. F., & Leonenko, N. N. (1987). Sample estimate of the entropy of a random vector. Problemy Peredachi Informatsii, 23(2), 9–16.
  21. Laptev, N., Yosinski, J., Li, L. E., & Smyl, S. (2017). Time-series extreme event forecasting with neural networks at Uber. International Conference on Machine Learning, 34, 1–5.
  22. Lo, A. W. (2004). The adaptive markets hypothesis: Market efficiency from an evolutionary perspective. The Journal of Portfolio Management, 30(5), 15–29. https://doi.org/10.3905/jpm.2004.442611
  23. Mahmoud, A., & Sakr, S. (2012). The predictive power of fundamental analysis in terms of stock return and future profitability performance in Egyptian Stock Market: Empirical Study. International Research Journal of Finance & Economics, 92(1), 43–58.
  24. Milosevic, N. (2016). Equity forecast: Predicting long term stock price movement using machine learning. Journal of Economics Library, 3(2), 288–294. http://doi.org/10.1453/jel.v3i2.750
  25. Muhammad, S., & Ali, G. (2018). The relationship between fundamental analysis and stock returns based on the panel data analysis; evidence from Karachi Stock exchange (KSE). Research Journal of Finance and Accounting, 9(3), 84–96.
  26. Nvidia Corporation. (2018). Nvidia Corporation Annual Review. Retrieved from https://s22.q4cdn.com/364334381/files/doc_financials/annual/2018/NVIDIA2018_AnnualReview-(new).pdf.
  27. Pai, P. F., & Lin, C. S. (2005). A hybrid ARIMA and support vector machines model in stock price forecasting. Omega, 33, 497–505. https://doi.org/10.1016/j.omega.2004.07.024
  28. Preis, T., Moat, H. S., & Stanley, E. H. (2013). Quantifying trading behavior in financial markets using Google Trends. Scientific Reports, 3(1684), 1–6. https://doi.org/10.1038/srep01684
  29. Rather, A. M., Agarwal, A., & Sastry, V. N. (2015). Recurrent neural network and a hybrid model for prediction of stock returns. Expert Systems with Applications, 42(6), 3234–3241. https://doi.org/10.1016/j.eswa.2014.12.003
  30. Shim, J. K., & Siegel, J. G. (2007). Handbook of Financial Analysis, Forecasting, and Modeling (p. 255). Chicago, USA: CCH.
  31. Stanković, J., Marković, J., & Stojanović, M. (2015). Investment strategy optimization using technical analysis and predictive modeling in emerging markets. Procedia Economics and Finance, 19, 51–62. https://doi.org/10.1016/S2212-5671(15)00007-6
  32. Whittle, P. (1951). Hypothesis Testing in Time Series Analysis. Uppsala, Sweden: Almqvist & Wiksells boktr.
  33. Yang, K., & Shahabi, C. (2005). On the stationarity of multivariate time series for correlation-based data analysis. In Proceedings of the Fifth IEEE International Conference on Data Mining, Houston. https://doi.org/10.1109/ICDM.2005.109
  34. Zeytinoglu, E., Akarim, Y. D., & Celik, S. (2012). The impact of market-based ratios on stock returns: The evidence from insurance sector in Turkey. International Research Journal of Finance and Economics, 84, 41–48.
  35. Zheng, A., & Jin, J. (2017). Using AI to make predictions on stock MARKET. Stanford University. Retrieved from http://cs229.stanford.edu/proj2017/final-reports/5212256.pdf
DOI: https://doi.org/10.2478/ceej-2021-0004 | Journal eISSN: 2543-6821 | Journal ISSN: 2544-9001
Language: English
Page range: 44 - 62
Published on: Jan 29, 2021
Published by: Faculty of Economic Sciences, University of Warsaw
In partnership with: Paradigm Publishing Services
Publication frequency: 1 issue per year

© 2021 Marcin Chlebus, Michał Dyczko, Michał Woźniak, published by Faculty of Economic Sciences, University of Warsaw
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.