References
- Abazovic, F. (2018). Nvidia stock dropped for the wrong reason. Retrieved from
https://www.fudzilla.com/news/ai/47637-nvidia-stock-dropped-for-the-wrong-reason - Abe, M., & Nakayama, H. (2018). Deep learning for forecasting stock returns in the cross-section. Pacific-Asia Conference on Knowledge Discovery and Data Mining. 273–284.
https://doi.org/10.1007/978-3-319-93034-3_22 - Adebiyi, A. A., Adewumi, A. O., & Ayo, C. K. (2014). Comparison of ARIMA and artificial neural networks models for stock price prediction. Journal of Applied Mathematics 2014.
https://doi.org/10.1155/2014/614342 - Adhikari, R., Verma, G., & Khandelwal, I. (2015). A model ranking based selective ensemble approach for time series forecasting. Procedia Computer Science, 48, 14–21.
https://doi.org/10.1016/j.procs.2015.04.104 - Ahmed, F., Asif, R., Hina, S., & Muzammil, M. (2017). Financial market prediction using Google Trends. International Journal of Advanced Computer Science and Applications, 8(7), 388–391.
https://doi.org/10.14569/IJACSA.2017.080752 - Altman, N. S. (1992). An introduction to kernel and nearest-neighbor nonparametric regression. The American Statistician, 46(3), 175–185.
https://doi.org/10.2307/2685209 - Beyaz, E., Tekiner, F., Zeng, X. J., & Keane, J. (2018). Stock Price Forecasting Incorporating Market State. 2018 IEEE 20th International Conference on High Performance Computing and Communications.
https://doi.org/10.1109/HPCC/SmartCity/DSS.2018.00263 - Bontempi, G., Taieb, S., & Borgne, Y. A. (2012). Machine learning strategies for time series forecasting. In European business intelligence summer school (pp. 62–77). Berlin, Germany: Springer.
https://doi.org/10.1007/978-3-642-36318-4_3 - Box, G., & Jenkins, G. (1970). Time Series Analysis: Forecasting and Control. San Francisco, CA: Holden-Day.
- Chen, T., & Guestrin, C. (2016). Xgboost: A scalable tree boosting system. In Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (pp. 785–794).
https://doi.org/10.1145/2939672.2939785 - Chen, K., Zhou, Y., & Dai, F. (2015). A LSTM-based method for stock returns prediction: A case study of China stock market. In 2015 IEEE International Conference on Big Data (Big Data).
https://doi.org/10.1109/bigdata.2015.7364089 - Chou, J. S., & Tran, D. S. (2018). Forecasting energy consumption time series using machine learning techniques based on usage patterns of residential householders. Energy, 165, 709–726.
https://doi.org/10.1016/j.energy.2018.09.144 - Vapnik, V., Drucker, H., Burges, C. J., Kaufman, L., & Smola, A. (1997). Support vector regression machines. Advances in Neural Information Processing Systems, 9, 155–161.
- Eassa, A. (2018). Why NVIDIA's Stock Crashed. Retrieved from
https://finance.yahoo.com/news/why-nvidia-apos-stock-crashed-122400380.html - Emir, S., Dincer, H., & Timor, M. (2012). A stock selection model based on fundamental and technical analysis variables by using artificial neural networks and support vector machines. Review of Economics & Finance, 2(3), 106–122.
- Hatta, A. J. (2012). The company fundamental factors and systematic risk in increasing stock price. Journal of Economics, Business and Accountancy, 15(2), 245–256.
http://doi.org/10.14414/jebav.v15i2.78 - Hill, J. B., & Motegi, K. (2019). Testing the white noise hypothesis of stock returns. Economic Modelling, 76, 231–242.
https://doi.org/10.1016/j.econmod.2018.08.003 - Hochreiter, S., & Schmidhuber, J. (1997). Long short-term memory. Neural Computation, 9(8), 1735–1780.
https://doi.org/10.1162/neco.1997.9.8.1735 - Ke, G., Meng, Q., Finley, T., Wang, T., & Chen, W. (2017). Lightgbm: A highly efficient gradient boosting decision tree. Advances in Neural Information Processing Systems, 30, 3146–3154.
- Kozachenko, L. F., & Leonenko, N. N. (1987). Sample estimate of the entropy of a random vector. Problemy Peredachi Informatsii, 23(2), 9–16.
- Laptev, N., Yosinski, J., Li, L. E., & Smyl, S. (2017). Time-series extreme event forecasting with neural networks at Uber. International Conference on Machine Learning, 34, 1–5.
- Lo, A. W. (2004). The adaptive markets hypothesis: Market efficiency from an evolutionary perspective. The Journal of Portfolio Management, 30(5), 15–29.
https://doi.org/10.3905/jpm.2004.442611 - Mahmoud, A., & Sakr, S. (2012). The predictive power of fundamental analysis in terms of stock return and future profitability performance in Egyptian Stock Market: Empirical Study. International Research Journal of Finance & Economics, 92(1), 43–58.
- Milosevic, N. (2016). Equity forecast: Predicting long term stock price movement using machine learning. Journal of Economics Library, 3(2), 288–294.
http://doi.org/10.1453/jel.v3i2.750 - Muhammad, S., & Ali, G. (2018). The relationship between fundamental analysis and stock returns based on the panel data analysis; evidence from Karachi Stock exchange (KSE). Research Journal of Finance and Accounting, 9(3), 84–96.
- Nvidia Corporation. (2018). Nvidia Corporation Annual Review. Retrieved from
https://s22.q4cdn.com/364334381/files/doc_financials/annual/2018/NVIDIA2018_AnnualReview-(new).pdf . - Pai, P. F., & Lin, C. S. (2005). A hybrid ARIMA and support vector machines model in stock price forecasting. Omega, 33, 497–505.
https://doi.org/10.1016/j.omega.2004.07.024 - Preis, T., Moat, H. S., & Stanley, E. H. (2013). Quantifying trading behavior in financial markets using Google Trends. Scientific Reports, 3(1684), 1–6.
https://doi.org/10.1038/srep01684 - Rather, A. M., Agarwal, A., & Sastry, V. N. (2015). Recurrent neural network and a hybrid model for prediction of stock returns. Expert Systems with Applications, 42(6), 3234–3241.
https://doi.org/10.1016/j.eswa.2014.12.003 - Shim, J. K., & Siegel, J. G. (2007). Handbook of Financial Analysis, Forecasting, and Modeling (p. 255). Chicago, USA: CCH.
- Stanković, J., Marković, J., & Stojanović, M. (2015). Investment strategy optimization using technical analysis and predictive modeling in emerging markets. Procedia Economics and Finance, 19, 51–62.
https://doi.org/10.1016/S2212-5671(15)00007-6 - Whittle, P. (1951). Hypothesis Testing in Time Series Analysis. Uppsala, Sweden: Almqvist & Wiksells boktr.
- Yang, K., & Shahabi, C. (2005). On the stationarity of multivariate time series for correlation-based data analysis. In Proceedings of the Fifth IEEE International Conference on Data Mining, Houston.
https://doi.org/10.1109/ICDM.2005.109 - Zeytinoglu, E., Akarim, Y. D., & Celik, S. (2012). The impact of market-based ratios on stock returns: The evidence from insurance sector in Turkey. International Research Journal of Finance and Economics, 84, 41–48.
- Zheng, A., & Jin, J. (2017). Using AI to make predictions on stock MARKET. Stanford University. Retrieved from
http://cs229.stanford.edu/proj2017/final-reports/5212256.pdf
