Have a personal or library account? Click to login
Enhancing the Autogenous Shrinkage Behaviour of High-Strength Concrete by Using Water Absorption Polymer Balls Cover

Enhancing the Autogenous Shrinkage Behaviour of High-Strength Concrete by Using Water Absorption Polymer Balls

Open Access
|Feb 2026

References

  1. Neville, A. M. & Brooks, J. J. (2010). Concrete Technology, second edition, Pearson Education Limited, England.
  2. Neville, A. M. (2011). Properties of Concrete, fifth edition, Pearson Education Limited, England.
  3. Mehta, P. & Monteiro, P. (2006). Concrete Microstructure, Properties, and Materials, third edition. McGraw-Hill.
  4. Vasusmitha, R. & Srinivasa, P. (2013). Strength and Durability Study of High Strength Self-Compacting Concrete, International Journal of Mining, Metallurgy and Mechanical Engineering (IJMMME), 1(1),18-26. https://journalsweb.org/siteadmin/upload/IJMMME%200101005.pdf.
  5. Siddique, R. (2011). Utilization of Silica Fume in Concrete: Review of Hardened Properties, Resources, Conservation and Recycling, 55 (11), 923-932. https://doi.org/10.1016/j.resconrec.2011.06.012.
  6. Tazawa, E. & Miyazawa, S. (1995). Influence of Cement and Admixture on Autogenous Shrinkage of Cement Paste, Cement and Concrete Research, 25(2),281-287. https://doi.org/10.1016/0008-8846(95)00010-0.
  7. Jiang, C., Yang, Y., Yong, W., Yuenian, Z. & Chengchang, M. (2014). Autogenous Shrinkage of High-Performance Concrete Containing Mineral Admixtures Under Different Curing Temperatures,” Construction and Building Materials, 61, 260–269. https://doi.org/10.1016/j.conbuildmat.2014.03.023.
  8. Lura, P., Ole, M. J. & Klaas van, B. (2003). Autogenous Shrinkage in High-Performance Cement Paste: An Evaluation of Basic
  9. Mechanisms, Cement and Concrete Research, 33(2), 223–232. https://doi.org/10.1016/S0008-8846(02)00890-6.
  10. Al-Rhimy, A. S. (2018). Experimental Evaluation and Modelling of Time-Dependent Deformations of Self-Compacting Concrete, Ph.D. Thesis, University of Technology, Civil Engineering Department, pp. 184.
  11. Lepage, S., Moussa, B., Éric, D., & Pierre, A. (1999). Early Shrinkage Development in a High-Performance Concrete, Cement, Concrete, and Aggregates, 21(2), 31–35. https://doi.org/10.1520/CCA10505J.
  12. Ikram, F. & Ammar, S. (2017). Volumetric Change of Concrete Containing Water Absorption Polymer Balls, International Journal of Science and Research (IJSR), 6(9), DOI: 10.21275/ART20176503.
  13. Al-Mulla, I. F., Al-Ameeri, A. S., Al-Rihimy, A. S. & Al-Attar, T. S. (2024). Elasticity and Load-Displacement Behavior of Engineered Cementitious Composites produced with Different Polymeric Fibers, Engineering, Technology & Applied Science Research, 14(1), 13026-13032. https://doi.org/10.48084/etasr.6731.
  14. Al-Hamad. E. G., Ragab, A. M., Elattar, M. M., & Sadek, D. M. (2024). Experimental Comparison of Fibers and Nanomaterials in Compression Test and Cost of High Strength Concrete in Egypt, Civil and Environmental Engineering, 18(2), 736-749, http://dx.doi.org/10.2478/cee-2022-0068.
  15. Marcalikova, Z., Gandel, R., Jerabek, J., & Varak, J. (2024). Selected Properties and Microstructure of Concrete with Tire Rubber Granulate as Recycled Material in Construction Industry, Civil and Environmental Engineering Vol. 20, Issue 2, 754-766, DOI: 10.2478/cee-2024-0057.
  16. Al-Mulla Ikram, F., Al-Ameeri, A. S., & Al-Attar, T. S. (2024). Creep Coefficient and Specific Creep of Engineered Cementitious Composite - Bendable Concrete, Civil and Environmental Engineering, Vol. 20, Issue 1, 377-386, DOI: 10.2478/cee-2024-0029.
  17. Hoang, D., Pham, D., Cao, M., & Tran, M. (2025). Effect of Short Polypropylene Fiber Content on the Mechanical Properties of Textile-Reinforced Engineered Concrete Composite, Civil and Environmental Engineering Vol. 21, Issue 1, 521-534, DOI: 10.2478/cee-2025-0039.
  18. Muntadher, J., Al-Attar, T., & Al-Adili, A. (2024). Compatibility and Mechanical Performance of High-Strength Self-Compacting Concrete Produced with Recycled Glass Powder, Civil and Environmental Engineering Vol. 20, Issue 2, 1107-1119, DOI: 10.2478/cee-2024-0080.
  19. Hameed, O., Usman, F., Hayder, G., & Al-Ani, Y. (2025). Evaluation of Eco-Friendly Nano Clay in Concrete Mix Design, Civil and Environmental Engineering, Vol. 21, Issue 1, 671-679, DOI: 10.2478/cee-2025-0050.
  20. ASTM C-150. (2007). Standard Specification for Portland Cement, ASTM International, West Conshohocken. United States.
  21. ASTM C33-08. (2008). Standard Specification for Concrete Aggregate, ASTM International, West Conshohocken. United States.
  22. ASTM C1240-15. (2015). Standard specification for silica fume used in cementitious mixtures, ASTM International.
  23. ACI 209.1R-05. (2005). Report on factors affecting shrinkage and creep of hardened concrete, ACI Committee 209.
  24. ASTM C39-05. (2005). Standard Test Method for Compressive Strength of Cylindrical Concrete Specimens, ASTM International.
DOI: https://doi.org/10.2478/cee-2026-0072 | Journal eISSN: 2199-6512 | Journal ISSN: 1336-5835
Language: English
Submitted on: Sep 20, 2025
|
Accepted on: Oct 19, 2025
|
Published on: Feb 8, 2026
Published by: University of Žilina
In partnership with: Paradigm Publishing Services
Publication frequency: 2 issues per year

© 2026 Ikram Al-Mulla, Ammar Al-Rihimy, published by University of Žilina
This work is licensed under the Creative Commons Attribution 4.0 License.

AHEAD OF PRINT