References
- Collepardi, M. (2006). The new concrete. ENCO.
- Sucharda, O., Gandel, R., Cmiel, P., Jerabek, J., & Bilek, V. (2024). Utilization of high-performance concrete mixtures for advanced manufacturing technologies. Buildings, 14(8), 2269. https://doi.org/10.3390/buildings14082269.
- Long, G., Gao, Y., & Xie, Y. (2015). Designing more sustainable and greener self-compacting concrete. Construction and Building Materials, 84, 301–306. https://doi.org/10.1016/j.conbuildmat.2015.02.072.
- Chiaia, B., Fantilli, A. P., Guerini, A., Volpatti, G., & Zampini, D. (2014). Eco-mechanical index for structural concrete. Construction and Building Materials, 67, 386–392. https://doi.org/10.1016/j.conbuildmat.2013.12.090.
- Marcalikova, Z., Gandel, R., Jerabek, J., & Varak, J. (2024). Selected properties and microstructure of concrete with tire rubber granulate as recycled material in construction industry. Civil and Environmental Engineering, 20(2), 754–766. https://doi.org/10.2478/cee-2024-0057.
- Marcalikova, Z., Jerabek, J., Gandel, R., Gabor, R., Bilek, V., & Sucharda, O. (2024). Mechanical properties, workability, and experiments of reinforced composite beams with alternative binder and aggregate. Buildings, 14(7), 2142. https://doi.org/10.3390/buildings14072142.
- Aïtcin, P. C. (1998). High-performance concrete. CRC Press.
- Mateckova, P., Bilek, V., & Sucharda, O. (2021). Comparative study of high-performance concrete characteristics and loading test of pretensioned experimental beams. Crystals, 11(4), 427. https://doi.org/10.3390/cryst11040427.
- Sivakumar, A., & Santhanam, M. (2007). Mechanical properties of high strength concrete reinforced with metallic and non-metallic fibres. Cement and Concrete Composites, 29(8), 603–608. https://doi.org/10.1016/j.cemconcomp.2007.03.006.
- Marcalikova, Z., Cajka, R., Bilek, V., Bujdos, D., & Sucharda, O. (2020). Determination of mechanical characteristics for fiber-reinforced concrete with straight and hooked fibers. Crystals, 10(6), 545. https://doi.org/10.3390/cryst10060545.
- Brandt, A. M. (2008). Fibre reinforced cement-based (FRC) composites after over 40 years of development in building and civil engineering. Composite Structures, 86(1–3), 3–9. https://doi.org/10.1016/j.compstruct.2008.03.006.
- Katzer, J., & Domski, J. (2012). Quality and mechanical properties of engineered steel fibres used as reinforcement for concrete. Construction and Building Materials, 34, 243–248. https://doi.org/10.1016/j.conbuildmat.2012.02.058.
- Kraľovanec, J., & Moravčík, M. (2022). Experimental measurements in the field of prestressing force monitoring. Civil and Environmental Engineering, 18(1), 104–110. https://doi.org/10.2478/cee-2022-0011.
- Vázquez-Rodríguez, F. J. et al. (2020). Effect of mineral aggregates and chemical admixtures as internal curing agents on the mechanical properties and durability of high-performance concrete. Materials, 13(9), 2090. https://doi.org/10.3390/ma13092090.
- Feo, L., Ascione, F., Penna, R., Lau, D., & Lamberti, M. (2020). An experimental investigation on freezing and thawing durability of high performance fiber reinforced concrete (HPFRC). Composite Structures, 234, 111673. https://doi.org/10.1016/j.compstruct.2019.111673.
- Yoon, Y. S., & Kwon, S. J. (2018). Evaluation of time-dependent chloride resistance in HPC containing fly ash cured for 1 year. Journal of the Korea Institute for Structural Maintenance and Inspection, 22(4), 52–59.
- Bilek, V. Sr., Bilek, V. Jr., Krutil, K., & Krutilova, K. (2012). Some aspects of durability of concrete with ternary binders. In Proceedings of the 8th CCC Durability of Concrete, Plitvice Lakes, Croatia, 4–6.
- Li, L. G., Zheng, J. Y., Ng, P. L., Zhu, J., & Kwan, A. K. H. (2019). Cementing efficiencies and synergistic roles of silica fume and nano-silica in sulphate and chloride resistance of concrete. Construction and Building Materials, 223, 965–975.
- Thomas, M. (2011). The effect of supplementary cementing materials on alkali–silica reaction: A review. Cement and Concrete Research, 41(12), 1224–1231.
- Reddy, G. G. K., & Ramadoss, P. (2022). Effect of steel fiber volume fraction on the mechanical behavior of ultra-high performance concrete composites. International Journal of Engineering, Transactions A: Basics, 35, 1365–1374.
- Zhang, D., Yu, J., Wu, H., Jaworska, B., Ellis, B. R., & Li, V. C. (2020). Discontinuous micro-fibers as intrinsic reinforcement for ductile engineered cementitious composites (ECC). Composites Part B: Engineering, 184, 107741.
- Sengun, E., Sherzai, M. H., Mercan, A. M., Guzelce, A., Alam, B., & Yaman, I. O. (2023). The impact of specimen size and alteration of fiber configuration on the flexural performance of high-performance concrete. Journal of Building Engineering, 68, 106142.
- Sorelli, L. G., Meda, A., & Plizzari, G. A. (2006). Steel fiber concrete slabs on ground: A structural matter. ACI Materials Journal, 103(4), 551–560.
- Sucharda, O., Bilek, V., Smirakova, M., Kubosek, J., & Cajka, R. (2017). Comparative evaluation of mechanical properties of fibre-reinforced concrete and approach to modelling of bearing capacity of ground slab. Periodica Polytechnica Civil Engineering, 61(4), 972–986.
- Zhao, J., Liang, J., Chu, L., & Shen, F. (2018). Experimental study on shear behavior of steel fiber reinforced concrete beams with high-strength reinforcement. Materials, 11(9), 1682.
- Sucharda, O., Marcalikova, Z., & Gandel, R. (2022). Microstructure, shrinkage, and mechanical properties of concrete with fibers and experiments of reinforced concrete beams without shear reinforcement. Materials, 15(16), 5707. https://doi.org/10.3390/ma15165707.
- Yas, S. T., & Al-Hadithy, L. K. (2024). Amelioration of flexural performance for reinforced concrete beams by soffit bonded high performance self compacting concrete prisms. Civil and Environmental Engineering, 20(1), 27–40. https://doi.org/10.2478/cee-2024-0003.
- Sucharda, O., Konecny, P., Kubosek, J., Ponikiewski, T., & Done, P. (2015). Finite element modelling and identification of the material properties of fibre concrete. In Proceedings of the 23rd Conference of the Italian Group of Fracture (IGFXXIII). Procedia Engineering. https://doi.org/10.1016/j.proeng.2015.06.222.
- Akbulut, Z. F., Tawfik, T. A., Smarzewski, P., & Guler, S. (2025). Advancing hybrid fiber-reinforced concrete: Performance, crack resistance mechanism, and future innovations. Buildings, 15(8), 1247. https://doi.org/10.3390/buildings15081247.
- Yuan, X., Zhu, G. H., & Yu, L. (2012). Freeze/thaw durability of carbon fiber reinforced concrete. In Applied Mechanics and Materials (Vols. 174–177, pp. 816–820). Trans Tech Publications. https://doi.org/10.4028/www.scientific.net/AMM.174-177.816.
- Lu, W., Ning, G., Tang, J., Geng, L., & Luo, W. (2022). Influence of mineral admixtures on high performance concrete. Vibroengineering Procedia, 44, 99–104. https://doi.org/10.21595/vp.2022.22780.
- Da Silva Neto, J. T., Ribeiro Soares Junior, P. R., Reis, E. D., Maciel, P. de S., Gomes, P. C. C., Gouveia, A. M. C., & Da Silva Bezerra, A. C. (2025). Fiber-reinforced cementitious composites: Recent advances and future perspectives on key properties for high-performance design. Discover Civil Engineering, 2(1). https://doi.org/10.1007/s44290-025-00209-9.
- The Czech Office for Standards, Metrology and Testing. (2020). ČSN EN 12390-3 Testing hardened concrete—Part 3: Compressive strength of test specimens.
- The Czech Office for Standards, Metrology and Testing. (2016). ČSN EN 196-1 Methods of testing cement—Part 1: Determination of strength.
- The Czech Office for Standards, Metrology and Testing. (2024). ČSN EN 12390-6 Testing hardened concrete—Part 6: Tensile splitting strength of test specimens.
- The Czech Office for Standards, Metrology and Testing. (1985). ČSN 73 1326 Resistance of cement concrete surface to water and defrosting chemicals.
- The Czech Office for Standards, Metrology and Testing. (1969). ČSN 73 1371 Determination of frost resistance of concrete.
