Have a personal or library account? Click to login
Enhancement of Strength Properties and Durability in High-Performance Concrete Using Polymer and Steel Fibers Cover

Enhancement of Strength Properties and Durability in High-Performance Concrete Using Polymer and Steel Fibers

Open Access
|Feb 2026

References

  1. Collepardi, M. (2006). The new concrete. ENCO.
  2. Sucharda, O., Gandel, R., Cmiel, P., Jerabek, J., & Bilek, V. (2024). Utilization of high-performance concrete mixtures for advanced manufacturing technologies. Buildings, 14(8), 2269. https://doi.org/10.3390/buildings14082269.
  3. Long, G., Gao, Y., & Xie, Y. (2015). Designing more sustainable and greener self-compacting concrete. Construction and Building Materials, 84, 301–306. https://doi.org/10.1016/j.conbuildmat.2015.02.072.
  4. Chiaia, B., Fantilli, A. P., Guerini, A., Volpatti, G., & Zampini, D. (2014). Eco-mechanical index for structural concrete. Construction and Building Materials, 67, 386–392. https://doi.org/10.1016/j.conbuildmat.2013.12.090.
  5. Marcalikova, Z., Gandel, R., Jerabek, J., & Varak, J. (2024). Selected properties and microstructure of concrete with tire rubber granulate as recycled material in construction industry. Civil and Environmental Engineering, 20(2), 754–766. https://doi.org/10.2478/cee-2024-0057.
  6. Marcalikova, Z., Jerabek, J., Gandel, R., Gabor, R., Bilek, V., & Sucharda, O. (2024). Mechanical properties, workability, and experiments of reinforced composite beams with alternative binder and aggregate. Buildings, 14(7), 2142. https://doi.org/10.3390/buildings14072142.
  7. Aïtcin, P. C. (1998). High-performance concrete. CRC Press.
  8. Mateckova, P., Bilek, V., & Sucharda, O. (2021). Comparative study of high-performance concrete characteristics and loading test of pretensioned experimental beams. Crystals, 11(4), 427. https://doi.org/10.3390/cryst11040427.
  9. Sivakumar, A., & Santhanam, M. (2007). Mechanical properties of high strength concrete reinforced with metallic and non-metallic fibres. Cement and Concrete Composites, 29(8), 603–608. https://doi.org/10.1016/j.cemconcomp.2007.03.006.
  10. Marcalikova, Z., Cajka, R., Bilek, V., Bujdos, D., & Sucharda, O. (2020). Determination of mechanical characteristics for fiber-reinforced concrete with straight and hooked fibers. Crystals, 10(6), 545. https://doi.org/10.3390/cryst10060545.
  11. Brandt, A. M. (2008). Fibre reinforced cement-based (FRC) composites after over 40 years of development in building and civil engineering. Composite Structures, 86(1–3), 3–9. https://doi.org/10.1016/j.compstruct.2008.03.006.
  12. Katzer, J., & Domski, J. (2012). Quality and mechanical properties of engineered steel fibres used as reinforcement for concrete. Construction and Building Materials, 34, 243–248. https://doi.org/10.1016/j.conbuildmat.2012.02.058.
  13. Kraľovanec, J., & Moravčík, M. (2022). Experimental measurements in the field of prestressing force monitoring. Civil and Environmental Engineering, 18(1), 104–110. https://doi.org/10.2478/cee-2022-0011.
  14. Vázquez-Rodríguez, F. J. et al. (2020). Effect of mineral aggregates and chemical admixtures as internal curing agents on the mechanical properties and durability of high-performance concrete. Materials, 13(9), 2090. https://doi.org/10.3390/ma13092090.
  15. Feo, L., Ascione, F., Penna, R., Lau, D., & Lamberti, M. (2020). An experimental investigation on freezing and thawing durability of high performance fiber reinforced concrete (HPFRC). Composite Structures, 234, 111673. https://doi.org/10.1016/j.compstruct.2019.111673.
  16. Yoon, Y. S., & Kwon, S. J. (2018). Evaluation of time-dependent chloride resistance in HPC containing fly ash cured for 1 year. Journal of the Korea Institute for Structural Maintenance and Inspection, 22(4), 52–59.
  17. Bilek, V. Sr., Bilek, V. Jr., Krutil, K., & Krutilova, K. (2012). Some aspects of durability of concrete with ternary binders. In Proceedings of the 8th CCC Durability of Concrete, Plitvice Lakes, Croatia, 4–6.
  18. Li, L. G., Zheng, J. Y., Ng, P. L., Zhu, J., & Kwan, A. K. H. (2019). Cementing efficiencies and synergistic roles of silica fume and nano-silica in sulphate and chloride resistance of concrete. Construction and Building Materials, 223, 965–975.
  19. Thomas, M. (2011). The effect of supplementary cementing materials on alkali–silica reaction: A review. Cement and Concrete Research, 41(12), 1224–1231.
  20. Reddy, G. G. K., & Ramadoss, P. (2022). Effect of steel fiber volume fraction on the mechanical behavior of ultra-high performance concrete composites. International Journal of Engineering, Transactions A: Basics, 35, 1365–1374.
  21. Zhang, D., Yu, J., Wu, H., Jaworska, B., Ellis, B. R., & Li, V. C. (2020). Discontinuous micro-fibers as intrinsic reinforcement for ductile engineered cementitious composites (ECC). Composites Part B: Engineering, 184, 107741.
  22. Sengun, E., Sherzai, M. H., Mercan, A. M., Guzelce, A., Alam, B., & Yaman, I. O. (2023). The impact of specimen size and alteration of fiber configuration on the flexural performance of high-performance concrete. Journal of Building Engineering, 68, 106142.
  23. Sorelli, L. G., Meda, A., & Plizzari, G. A. (2006). Steel fiber concrete slabs on ground: A structural matter. ACI Materials Journal, 103(4), 551–560.
  24. Sucharda, O., Bilek, V., Smirakova, M., Kubosek, J., & Cajka, R. (2017). Comparative evaluation of mechanical properties of fibre-reinforced concrete and approach to modelling of bearing capacity of ground slab. Periodica Polytechnica Civil Engineering, 61(4), 972–986.
  25. Zhao, J., Liang, J., Chu, L., & Shen, F. (2018). Experimental study on shear behavior of steel fiber reinforced concrete beams with high-strength reinforcement. Materials, 11(9), 1682.
  26. Sucharda, O., Marcalikova, Z., & Gandel, R. (2022). Microstructure, shrinkage, and mechanical properties of concrete with fibers and experiments of reinforced concrete beams without shear reinforcement. Materials, 15(16), 5707. https://doi.org/10.3390/ma15165707.
  27. Yas, S. T., & Al-Hadithy, L. K. (2024). Amelioration of flexural performance for reinforced concrete beams by soffit bonded high performance self compacting concrete prisms. Civil and Environmental Engineering, 20(1), 27–40. https://doi.org/10.2478/cee-2024-0003.
  28. Sucharda, O., Konecny, P., Kubosek, J., Ponikiewski, T., & Done, P. (2015). Finite element modelling and identification of the material properties of fibre concrete. In Proceedings of the 23rd Conference of the Italian Group of Fracture (IGFXXIII). Procedia Engineering. https://doi.org/10.1016/j.proeng.2015.06.222.
  29. Akbulut, Z. F., Tawfik, T. A., Smarzewski, P., & Guler, S. (2025). Advancing hybrid fiber-reinforced concrete: Performance, crack resistance mechanism, and future innovations. Buildings, 15(8), 1247. https://doi.org/10.3390/buildings15081247.
  30. Yuan, X., Zhu, G. H., & Yu, L. (2012). Freeze/thaw durability of carbon fiber reinforced concrete. In Applied Mechanics and Materials (Vols. 174–177, pp. 816–820). Trans Tech Publications. https://doi.org/10.4028/www.scientific.net/AMM.174-177.816.
  31. Lu, W., Ning, G., Tang, J., Geng, L., & Luo, W. (2022). Influence of mineral admixtures on high performance concrete. Vibroengineering Procedia, 44, 99–104. https://doi.org/10.21595/vp.2022.22780.
  32. Da Silva Neto, J. T., Ribeiro Soares Junior, P. R., Reis, E. D., Maciel, P. de S., Gomes, P. C. C., Gouveia, A. M. C., & Da Silva Bezerra, A. C. (2025). Fiber-reinforced cementitious composites: Recent advances and future perspectives on key properties for high-performance design. Discover Civil Engineering, 2(1). https://doi.org/10.1007/s44290-025-00209-9.
  33. The Czech Office for Standards, Metrology and Testing. (2020). ČSN EN 12390-3 Testing hardened concrete—Part 3: Compressive strength of test specimens.
  34. The Czech Office for Standards, Metrology and Testing. (2016). ČSN EN 196-1 Methods of testing cement—Part 1: Determination of strength.
  35. The Czech Office for Standards, Metrology and Testing. (2024). ČSN EN 12390-6 Testing hardened concrete—Part 6: Tensile splitting strength of test specimens.
  36. The Czech Office for Standards, Metrology and Testing. (1985). ČSN 73 1326 Resistance of cement concrete surface to water and defrosting chemicals.
  37. The Czech Office for Standards, Metrology and Testing. (1969). ČSN 73 1371 Determination of frost resistance of concrete.
DOI: https://doi.org/10.2478/cee-2026-0071 | Journal eISSN: 2199-6512 | Journal ISSN: 1336-5835
Language: English
Submitted on: Aug 6, 2025
|
Accepted on: Nov 24, 2025
|
Published on: Feb 8, 2026
Published by: University of Žilina
In partnership with: Paradigm Publishing Services
Publication frequency: 2 issues per year

© 2026 Jiri Nemec, Jan Jerabek, Radoslav Gandel, Oldrich Sucharda, published by University of Žilina
This work is licensed under the Creative Commons Attribution 4.0 License.

AHEAD OF PRINT