Have a personal or library account? Click to login
Comparative Study of Steel Buildings with Eccentrically Inverted V-Brace Frames and Concentrically Inverted V-Brace Frames Cover

Comparative Study of Steel Buildings with Eccentrically Inverted V-Brace Frames and Concentrically Inverted V-Brace Frames

Open Access
|Jan 2026

References

  1. Malley, J. O., & Popov, E. P. (1983). Design considerations for shear links in eccentrically braced frames. Earthquake Engineering Research Center, University of California.
  2. Kasai, K., & Popov, E. P. (1986). A study of seismically resistant eccentrically braced steel frame systems. Earthquake Engineering Research Center, University of California.
  3. Yiğitsoy, G. (2010). A numerical study on beam stability in eccentrically braced frames (Master’s thesis). Middle East Technical University, Ankara, Turkey.
  4. Sabouri-Ghomi, S., & Payandehjoo, B. (2017). Analytical and experimental studies of the seismic performance of drawer bracing system (DBS). International Journal of Civil Engineering, 15(8), 1087–1096. https://doi.org/10.1007/s40999-017-0240-5
  5. Salmasi, A. C., & Sheidaii, M. R. (2017). Assessment of eccentrically braced frames strength against progressive collapse. International Journal of Steel Structures, 17 (2), 543–551. https://doi.org/10.1007/s13296-017-6014-8
  6. Mirjalali, H., Ghasemi, M., & Labbafzadeh, M. S. (2019). Effect of bracing type and topology on progressive collapse resistance of eccentrically braced frames. International Journal of Steel Structures, 19(4), 1125–1133. https://doi.org/10.1007/s13296-019-00225-3
  7. Prinz, G. S. (2010). Using buckling-restrained braces in eccentric configurations (Ph.D. thesis). Brigham Young University, Provo, UT, USA. Retrieved from https://scholarsarchive.byu.edu/etd/2134
  8. Banihashemi, M. R., Mirzagoltabar, A. R., & Tavakoli, H. R. (2015). Performance-based plastic design method for steel concentric braced frames. International Journal of Advanced Structural Engineering, 7(3), 281–293. https://doi.org/10.1007/s40091-015-0099-0
  9. Mahmoudi, M., Shirpour, A., & Zarezadeh, A. (2019). The effects of mid-span connection specifications on compressive performance of cross (X) braces. International Journal of Steel Structures, 19(4), 1125–1133. https://doi.org/10.1007/s13296-018-0192-x
  10. Yang, T. Y., Sheikh, H., & Tobber, L. (2019). Influence of the brace configurations on the seismic performance of steel concentrically braced frames. Frontiers in Built Environment, 5, Article 123. https://doi.org/10.3389/fbuil.2019.00027
  11. Zeng, L., Zhang, W., & Ding, Y. (2019). Representative strain-based fatigue and fracture evaluation of I-shaped steel bracing members using the fiber model. Journal of Constructional Steel Research, 160, 476–489. https://doi.org/10.1016/j.jcsr.2019.05.051
  12. Tajmir Riahi, H., Zeynalian, M., Rabiei, A., & Ferdosi, E. (2020). Seismic collapse assessment of K-shaped bracings in cold-formed steel frames. Structures, 25, 256–267. https://doi.org/10.1016/j.istruc.2020.03.013
  13. Hammad, A., & Moustafa, M. A. (2021). Numerical analysis of special concentric braced frames using experimentally validated fatigue and fracture model under short and long duration earthquakes. Bulletin of Earthquake Engineering, 19(1), 287–316.
  14. Astaneh-Asl, A., Topkaya, C., & Kazemzadeh Azad, S. (2017). Seismic behavior of concentrically braced frames designed to AISC341 and EC8 provisions. Journal of Constructional Steel Research, 133, 383–404. https://doi.org/10.1016/j.jcsr.2017.02.026
  15. Tamboli, A. R. (n.d.). Handbook of structural steel connection design and details (3rd ed.). McGraw-Hill Education. ISBN 978-1259585517.
  16. Issa, A., Stephen, S., & Mwafy, A. (2024). Unveiling the seismic performance of concentrically braced steel frames: A comprehensive review. Sustainability, 16(1), 427. https://doi.org/10.3390/su16010427
  17. Al-Safi, S., Alameri, I. A., Ezzedine, S. A. N., & Alwalidi, M. Q. (2022). Performance-based seismic design of laterally braced steel frames. Challenge Journal of Structural Mechanics, 8(4), 141–149. https://doi.org/10.20528/cjsmec.2022.04.002
  18. Souri, O., & Mofid, M. (2023). Seismic evaluation of concentrically braced steel frames equipped with yielding elements and BRBs. Results in Engineering, 17, 100853. https://doi.org/10.1016/j.rineng.2022.100853
  19. Gottem, A. S., Lingeshwaran, N., Himath Kumar, Y., Mallika Chowdary, C., Pratheba, S., & Perumal, K. (2023). Analytical study of buckling restrained braced frames in different seismic zone using ETABS. Civil and Environmental Engineering, 19(1), 426–443. https://doi.org/10.2478/cee-2023-0038
  20. Sugihardjo, H., Habieb, A. B., & Karuniawan, R. (2022). Seismic performance of special truss moment frames with X-bracing type: Influence of building height. Civil and Environmental Engineering, 18(2), 631–640. https://doi.org/10.2478/cee-2022-0058
  21. Roeder, C. W., & Popov, E. P. (1978). Eccentrically braced steel frames for earthquakes. Journal of the Structural Division, ASCE, 104(3), 391–412. https://doi.org/10.1061/JSDEAG.0004875
  22. American Institute of Steel Construction. (2022). Specification for structural steel buildings (AISC 341). AISC.
  23. European Committee for Standardization. (2004). Eurocode 8 (EN 1998-1:2004), Design of structures for earthquake resistance: General rules, seismic actions and rules for buildings. Brussels, Belgium.
  24. Canadian Standards Association. (1994). CAN/CSA S16-94: Limit states design of steel structures. Rexdale, Ontario.
  25. Popov, E. P., & Engelhardt, M. D. (1988). Seismic eccentrically braced frames. Journal of Constructional Steel Research, 10, 321–354.
  26. Federal Emergency Management Agency. (2003). HAZUS MR1: Multi-hazard loss estimation methodology: Earthquake model. Department of Homeland Security.
  27. Federal Emergency Management Agency. (2003). HAZUS MR4: Multi-hazard loss estimation methodology: Earthquake model. Department of Homeland Security
  28. Kianmehr, A. (2021). Effect of the bracing system on the probability of collapse of steel structures under maximum credible earthquake. Shock and Vibration, 2021, Article 123456. https://doi.org/10.1155/2021/2323758
  29. American Society of Civil Engineers. (2022). ASCE 7-22: Minimum design loads and associated criteria for buildings and other structures. Reston, VA: ASCE.
  30. C.O.S.Q.C. (2017). ISC 2017: Iraqi seismic code requirements for buildings (1st ed.). Baghdad, Iraq.
  31. Computers and Structures, Inc. (2017). ETABS: Structural and earthquake engineering software [Software].
  32. Federal Emergency Management Agency. (2005). FEMA 440: Improvement of nonlinear static seismic analysis procedures. Applied Technology Council (ATC-55 Project).
  33. American Society of Civil Engineers. (2017). ASCE/SEI 41-17: Seismic evaluation and retrofit of existing buildings. Reston, VA: ASCE.
  34. Federal Emergency Management Agency. (2000). FEMA 356: Prestandard and commentary for seismic rehabilitation of buildings. ASCE.
  35. Ramadan, T., & Ghobarah, A. (1995). Analytical model for shear-link behavior. Journal of Structural Engineering, 121, 1574–1580. https://doi.org/10.1061/(ASCE)0733-9445(1995)121:11(1574)
  36. American Concrete Institute. (2022). Building Code Requirements for Structural Concrete and Commentary (ACI 318-19 (22)) (Reapproved 2022). American Concrete Institute.
DOI: https://doi.org/10.2478/cee-2026-0066 | Journal eISSN: 2199-6512 | Journal ISSN: 1336-5835
Language: English
Submitted on: Oct 12, 2025
|
Accepted on: Nov 4, 2025
|
Published on: Jan 18, 2026
Published by: University of Žilina
In partnership with: Paradigm Publishing Services
Publication frequency: 2 issues per year

© 2026 Hussein Hakim Hasan, Weaam Majeed Arif, published by University of Žilina
This work is licensed under the Creative Commons Attribution 4.0 License.

AHEAD OF PRINT