References
- Chanson, H. (2015). Energy dissipation in hydraulic structures. CRC Press. http://dx.doi.org/10.1201/b18441.
- Felder, S., Fromm, C., & Chanson, H. (2012). Air entrainment and energy dissipation on a 8.9 slope stepped spillway with flat and pooled steps.
- Ashoor, A., & Riazi, A. (2019). Stepped spillways and energy dissipation: A non-uniform step length approach. Appl Sci, 9(23), 5071. https://doi.org/10.3390/app9235071.
- Felder, S., & Chanson, H. (2012). Closure to Energy dissipation down a stepped spillway with nonuniform step heights by Stefan Felder and Hubert Chanson. J Hydraul Eng, 138(10), 921–92. https://doi.org/10.1061/(ASCE)HY.1943-7900.00006.
- Felder, S., & Chanson, H. (2013). Aeration, flow instabilities, and residual energy on pooled stepped spillways of embankment dams. J Irrig Drain Eng, 139(10), 880–887. https://doi.org/10.1061/(ASCE)IR.1943-4774.0000627.
- Mohammed, A. Experimental Study of TheCofficient of Discharge fpr Porous Stepped Spillways. Civil and Environmental Engineering, 21(1), 570-580, https://doi.10.2478/cee-2025-0043.
- Scheres, B., Schüttrumpf, H., & Felder, S. (2020). Flow resistance and energy dissipation in supercritical air-water flows down vegetated chutes. Water Resour Res, 56(2), e2019WR026686. https://doi.org/10.1029/2019WR026686.
- Hunt, S., Kadavy, K., Wahl, T., & Moses, T. (2022). Physical modeling of beveled-face stepped chute. Water,14(3), 365. https://doi.org/10.3390/w14030365.
- Kökpinar, M. (2004). Flow over a stepped chute with and without macro-roughness elements. Can J Civ Eng, 31(5), 880–891. https://doi.org/10.1139/l04-059.
- Ahmed D., ISMAEEL, A., & MAKKI, J. Numerical Modeling of Local Sour Depth at Non-Uniform Piers. Civil and Environmental Engineering, 20(2), 699-710, https://doi:10.2478/cee-2024-0052.
- Chanson, H. (2002). Hydraulics of stepped chutes and spillways. CRC Press. http://dx.doi.org/10.1115/1.1523365.
- Al-Naely, H., Al-Khafaji, Z., & Khassaf, S. (2019). Effect of opening holes on the hydraulic performance for crump weir. Int J Eng, 31(12),2022–2027. https://doi:10.5829/ije.2018.31.12c.05.
- Al-Naely, H., Majdi, A., & Al-Khafaji, Z. (2019). A study of the development of the traditional Crump Weir by Adding Opening Holes within the weir body.
- Rageh, O. (1999). Effect of baffle blocks on the performance of radial hydraulic jump. in Proc. of the 4th International Water Technology Conference (IWTC), Alexandria, 255–269.
- Frizell K., & Svoboda, C. (2012). Performance of type III stilling basins–stepped spillway studies. United States Dept Inter Bur Reclamation, HL-2012-02, Denver.
- Gouri, K., & Dawari, B. (2020). Expermintal, Analysis, and Numerical Evaluation of Bridage Pier Scouring. Civil and Environmental Engineering, 20(1), 411-425, https://doi:10.2478/cee-2024-0032.
- Chanson, H., (1994). Hydraulics of skimming flows over stepped channels and spillways J Hydraul Res, 32(3), 445–460. https://doi.org/10.1080/00221689409498745.
- Gandhi, S., Pal, D., & Singh, M. (2016). Bed load and shear stress in open channel sediment flow. Elixir Sivel Eng, 1(99), 38310–38314.
- Gandhi, S. (2014). Analysis of Supercritical Flow In Suddenly Expanding Channel. Int J Fluid Mech Res, 41(3). https://doi:10.1615/InterJFluidMechRes.v41.i3.20.
- Gandhi, S. (2014). Characteristics of hydraulic jump. Int J Phys Math Sci, 8(4), 692–697. https://doi.org/10.1016/j.euromechflu.2008.06.004.
- Gandhi, S., & Singh, R. (2014). Hydraulic jump characteristics in non-prismatic channels. in ISHS 2014-Hydraulic Structures and Society-Engineering Challenges and Extremes: Proceedings of the 5th IAHR International Symposium on Hydraulic Structures, 1–9. https://doi:10.14264/uql.2014.14.
- Sumit, G., & Vishal, Y. (2013). Characteristics of supercritical flow in rectangular channel. Int J Phys Sci, 8(40), 1934–1943. https://doi:10.5897/IJPS2013.4032.
- Simões, A., Schulz, H., & Melo P. (2010). Stepped and smooth spillways: resistance effects on stilling basin lengths. J Hydraul Res, 48(3), 329–337. https://doi.org/10.1080/00221686.2010.481853.
- Al-Husseini, R. (2016). A Novel experimental work and study on flow and energy dissipation over stepped spillways. J Babylon Univ Sci, 24(4), 1050–1063.
- Wu, S., & Rajaratnam, N. (1996). Transition from hydraulic jump to open channel flow. J Hydraul Eng, 122(9), 526–528. https://doi.org/10.1061/(ASCE)0733-9429(1996)122:9(52.
- Kozioł, A., Urbański, J., Kiczko, A., Krukowski, M., Siwicki, P., & Kalenik, M. (2017). Turbulence intensity and spatial scales of turbulence after hydraulic jump over scour hole in rectangular channel. J Hydrol Hydromechanics, 65(4), 385. https://doi:10.1515/johh-2017-0026.
- Habibzadeh, A., Loewen, M., & Rajaratnam, N. (2016). Turbulence measurements in submerged hydraulic jumps with baffle blocks. Can J Civ Eng, 436), 553–561. https://doi.org/10.1139/cjce-2015-0480.
- Hager, W. (2018). Hydraulic jump, in Energy Dissipators, Routledge. 43–60. https://doi.org/10.3390/w13131733.
