Have a personal or library account? Click to login
Experimental Investigation of Energy Dissipation Over Uniform and Non-Uniform Steppes Spillway with Different Baffle Block Distribution Cover

Experimental Investigation of Energy Dissipation Over Uniform and Non-Uniform Steppes Spillway with Different Baffle Block Distribution

Open Access
|Jan 2026

References

  1. Chanson, H. (2015). Energy dissipation in hydraulic structures. CRC Press. http://dx.doi.org/10.1201/b18441.
  2. Felder, S., Fromm, C., & Chanson, H. (2012). Air entrainment and energy dissipation on a 8.9 slope stepped spillway with flat and pooled steps.
  3. Ashoor, A., & Riazi, A. (2019). Stepped spillways and energy dissipation: A non-uniform step length approach. Appl Sci, 9(23), 5071. https://doi.org/10.3390/app9235071.
  4. Felder, S., & Chanson, H. (2012). Closure to Energy dissipation down a stepped spillway with nonuniform step heights by Stefan Felder and Hubert Chanson. J Hydraul Eng, 138(10), 921–92. https://doi.org/10.1061/(ASCE)HY.1943-7900.00006.
  5. Felder, S., & Chanson, H. (2013). Aeration, flow instabilities, and residual energy on pooled stepped spillways of embankment dams. J Irrig Drain Eng, 139(10), 880–887. https://doi.org/10.1061/(ASCE)IR.1943-4774.0000627.
  6. Mohammed, A. Experimental Study of TheCofficient of Discharge fpr Porous Stepped Spillways. Civil and Environmental Engineering, 21(1), 570-580, https://doi.10.2478/cee-2025-0043.
  7. Scheres, B., Schüttrumpf, H., & Felder, S. (2020). Flow resistance and energy dissipation in supercritical air-water flows down vegetated chutes. Water Resour Res, 56(2), e2019WR026686. https://doi.org/10.1029/2019WR026686.
  8. Hunt, S., Kadavy, K., Wahl, T., & Moses, T. (2022). Physical modeling of beveled-face stepped chute. Water,14(3), 365. https://doi.org/10.3390/w14030365.
  9. Kökpinar, M. (2004). Flow over a stepped chute with and without macro-roughness elements. Can J Civ Eng, 31(5), 880–891. https://doi.org/10.1139/l04-059.
  10. Ahmed D., ISMAEEL, A., & MAKKI, J. Numerical Modeling of Local Sour Depth at Non-Uniform Piers. Civil and Environmental Engineering, 20(2), 699-710, https://doi:10.2478/cee-2024-0052.
  11. Chanson, H. (2002). Hydraulics of stepped chutes and spillways. CRC Press. http://dx.doi.org/10.1115/1.1523365.
  12. Al-Naely, H., Al-Khafaji, Z., & Khassaf, S. (2019). Effect of opening holes on the hydraulic performance for crump weir. Int J Eng, 31(12),2022–2027. https://doi:10.5829/ije.2018.31.12c.05.
  13. Al-Naely, H., Majdi, A., & Al-Khafaji, Z. (2019). A study of the development of the traditional Crump Weir by Adding Opening Holes within the weir body.
  14. Rageh, O. (1999). Effect of baffle blocks on the performance of radial hydraulic jump. in Proc. of the 4th International Water Technology Conference (IWTC), Alexandria, 255–269.
  15. Frizell K., & Svoboda, C. (2012). Performance of type III stilling basins–stepped spillway studies. United States Dept Inter Bur Reclamation, HL-2012-02, Denver.
  16. Gouri, K., & Dawari, B. (2020). Expermintal, Analysis, and Numerical Evaluation of Bridage Pier Scouring. Civil and Environmental Engineering, 20(1), 411-425, https://doi:10.2478/cee-2024-0032.
  17. Chanson, H., (1994). Hydraulics of skimming flows over stepped channels and spillways J Hydraul Res, 32(3), 445–460. https://doi.org/10.1080/00221689409498745.
  18. Gandhi, S., Pal, D., & Singh, M. (2016). Bed load and shear stress in open channel sediment flow. Elixir Sivel Eng, 1(99), 38310–38314.
  19. Gandhi, S. (2014). Analysis of Supercritical Flow In Suddenly Expanding Channel. Int J Fluid Mech Res, 41(3). https://doi:10.1615/InterJFluidMechRes.v41.i3.20.
  20. Gandhi, S. (2014). Characteristics of hydraulic jump. Int J Phys Math Sci, 8(4), 692–697. https://doi.org/10.1016/j.euromechflu.2008.06.004.
  21. Gandhi, S., & Singh, R. (2014). Hydraulic jump characteristics in non-prismatic channels. in ISHS 2014-Hydraulic Structures and Society-Engineering Challenges and Extremes: Proceedings of the 5th IAHR International Symposium on Hydraulic Structures, 1–9. https://doi:10.14264/uql.2014.14.
  22. Sumit, G., & Vishal, Y. (2013). Characteristics of supercritical flow in rectangular channel. Int J Phys Sci, 8(40), 1934–1943. https://doi:10.5897/IJPS2013.4032.
  23. Simões, A., Schulz, H., & Melo P. (2010). Stepped and smooth spillways: resistance effects on stilling basin lengths. J Hydraul Res, 48(3), 329–337. https://doi.org/10.1080/00221686.2010.481853.
  24. Al-Husseini, R. (2016). A Novel experimental work and study on flow and energy dissipation over stepped spillways. J Babylon Univ Sci, 24(4), 1050–1063.
  25. Wu, S., & Rajaratnam, N. (1996). Transition from hydraulic jump to open channel flow. J Hydraul Eng, 122(9), 526–528. https://doi.org/10.1061/(ASCE)0733-9429(1996)122:9(52.
  26. Kozioł, A., Urbański, J., Kiczko, A., Krukowski, M., Siwicki, P., & Kalenik, M. (2017). Turbulence intensity and spatial scales of turbulence after hydraulic jump over scour hole in rectangular channel. J Hydrol Hydromechanics, 65(4), 385. https://doi:10.1515/johh-2017-0026.
  27. Habibzadeh, A., Loewen, M., & Rajaratnam, N. (2016). Turbulence measurements in submerged hydraulic jumps with baffle blocks. Can J Civ Eng, 436), 553–561. https://doi.org/10.1139/cjce-2015-0480.
  28. Hager, W. (2018). Hydraulic jump, in Energy Dissipators, Routledge. 43–60. https://doi.org/10.3390/w13131733.
DOI: https://doi.org/10.2478/cee-2026-0065 | Journal eISSN: 2199-6512 | Journal ISSN: 1336-5835
Language: English
Submitted on: Oct 9, 2025
|
Accepted on: Nov 4, 2025
|
Published on: Jan 18, 2026
Published by: University of Žilina
In partnership with: Paradigm Publishing Services
Publication frequency: 2 issues per year

© 2026 Noor S. Hussein, Teba S. Hussein, Weam A. Mohmmed, published by University of Žilina
This work is licensed under the Creative Commons Attribution 4.0 License.

AHEAD OF PRINT