Have a personal or library account? Click to login
Damage Detection In Concrete Beams Through Cement-Based Piezoelectric Composites Polarized Under Low Electric Fields Cover

Damage Detection In Concrete Beams Through Cement-Based Piezoelectric Composites Polarized Under Low Electric Fields

Open Access
|Jan 2026

References

  1. Abed, A. M. O., & Daud, S. A. (2024). Flexure Behaviour of Corroded Reinforcement Concrete Beams under Sustained Loads. Civil and Environmental Engineering, 20(2), 1162–1173. https://doi.org/10.2478/cee-2024-0085
  2. Ai, D., Zhang, D., & Zhu, H. (2024). Damage localization on reinforced concrete slab structure using electromechanical impedance technique and probability-weighted imaging algorithm. Construction and Building Materials, 424. https://doi.org/10.1016/j.conbuildmat.2024.135824
  3. Al-Masraf, H. M., Al-Attar, T. S., & Freyyah, Q. J. (2024). Fracture Behavior Of Engineered Cementitious Composites Concrete Under Center Point Bending Load. Civil and Environmental Engineering, 20(2), 1002–1023. https://doi.org/10.2478/cee-2024-0073
  4. Aydin, A. C., & Çelebi, O. (2023). Piezoelectric Materials in Civil Engineering Applications: A Review. In ACS Omega (Vol. 8, Issue 22, pp. 19168–19193). American Chemical Society. https://doi.org/10.1021/acsomega.3c00672
  5. Ding, W., Liu, Y., Shiotani, T., Wang, Q., Han, N., & Xing, F. (2021). Cement-based piezoelectric ceramic composites for sensing elements: A comprehensive state-of-the-art review. In Sensors (Vol. 21, Issue 9). MDPI AG. https://doi.org/10.3390/s21093230
  6. Ding, W., Xu, W., Dong, Z., Liu, Y., Wang, Q., & Shiotani, T. (2021). Influence of hydration capacity for cement matrix on the piezoelectric properties and microstructure of cement-based piezoelectric ceramic composites. Materials Characterization, 179. https://doi.org/10.1016/j.matchar.2021.111390
  7. Fan, S., Zhao, S., Qi, B., & Kong, Q. (2018). Damage evaluation of concrete column under impact load using a piezoelectric-based EMI technique. Sensors (Switzerland), 18(5). https://doi.org/10.3390/s18051591
  8. Gayakwad, H., & Thiyagarajan, J. S. (2022). Structural Damage Detection through EMI and Wave Propagation Techniques Using Embedded PZT Smart Sensing Units. Sensors, 22(6). https://doi.org/10.3390/s22062296
  9. Gedam, S. R., & Khante, S. N. (2016). Experimental Investigation on Sensitivity of Smart Aggregate Embedded in Reinforced Concrete Beam. Open Journal of Civil Engineering, 06(04), 653–669. https://doi.org/10.4236/ojce.2016.64053
  10. Guo, G., Zhong, S., Zhang, Q., Zhong, J., & Liu, D. (2023). Effect of Additional Mass on Natural Frequencies of Weight-Sensing Structures. Sensors, 23(17). https://doi.org/10.3390/s23177585
  11. Hayu, G. A., Sutrisno, W., Wulandari, K. D., & Suprobo, P. (2024). Effect of Low Electric Field Polarization Condition on Properties of Cement-based Piezoelectric Ceramic Composite. Civil Engineering and Architecture, 12(6), 3759–3771. https://doi.org/10.13189/cea.2024.120603
  12. Hossain, N., Shahriar Islam, M., Nazmul Ahshan, K., & Zahid Hossain, M. (2015). 794. Effects on natural frequency of a plate due to distributed and positional concentrated mass. 17(7).
  13. Jothi Saravanan, T., Balamonica, K., Bharathi Priya, C., Gopalakrishnan, N., & Murthy, S. G. N. (2017). Piezoelectric EMI– Based Monitoring of Early Strength Gain in Concrete and Damage Detection in Structural Components. Journal of Infrastructure Systems, 23(4). https://doi.org/10.1061/(asce)is.1943-555x.0000386
  14. Kim, J., Zhang, J., Malikov, A. K. ugli, & Cho, Y. (2024). A Study on the Development of the Stainless Steel Tube Bundle Structure Detecting System Using Ultrasonic Guided Wave. Sensors, 24(16). https://doi.org/10.3390/s24165278
  15. Li, Z., Dong, B., & Zhang, D. (2005). Influence of polarization on properties of 0-3 cement-based PZT composites. Cement and Concrete Composites, 27(1), 27–32. https://doi.org/10.1016/j.cemconcomp.2004.02.001
  16. Ma, Y., Jiang, Q., Dai, J., & Li, Y. (2022). Influence of PZT volume fraction, composite thickness and cement matrix on the performance of d15 shear mode 1–3 connectivity cement-based piezoelectric composites. Construction and Building Materials, 329. https://doi.org/10.1016/j.conbuildmat.2022.127190
  17. Pan, H. H., & Guan, J. C. (2022). Stress and strain behavior monitoring of concrete through electromechanical impedance using piezoelectric cement sensor and PZT sensor. Construction and Building Materials, 324. https://doi.org/10.1016/j.conbuildmat.2022.126685
  18. Pan, H. H., & Huang, M. W. (2020). Piezoelectric cement sensor-based electromechanical impedance technique for the strength monitoring of cement mortar. Construction and Building Materials, 254. https://doi.org/10.1016/j.conbuildmat.2020.119307
  19. Pan, H. H., Lin, D. H., & Yang, R. H. (2016). High piezoelectric and dielectric properties of 0-3 PZT/cement composites by temperature treatment. Cement and Concrete Composites, 72, 1–8. https://doi.org/10.1016/j.cemconcomp.2016.05.025
  20. Pan, H. H., Wang, C. K., Tia, M., & Su, Y. M. (2020). Influence of water-to-cement ratio on piezoelectric properties of cement-based composites containing PZT particles. Construction and Building Materials, 239. https://doi.org/10.1016/j.conbuildmat.2019.117858
  21. Pan, H.-H., Wong, Y.-D., & Su, Y.-M. (2019). Piezoelectric cement sensor and impedance analysis for concrete health monitoring. 33. https://doi.org/10.1117/12.2514306
  22. Santos, J. A., Sanches, A. O., Akasaki, J. L., Tashima, M. M., Longo, E., & Malmonge, J. A. (2020). Influence of PZT insertion on Portland cement curing process and piezoelectric properties of 0–3 cement-based composites by impedance spectroscopy. Construction and Building Materials, 238. https://doi.org/10.1016/j.conbuildmat.2019.117675
  23. Sappati, K. K., & Bhadra, S. (2018). Piezoelectric polymer and paper substrates: A review. In Sensors (Switzerland) (Vol. 18, Issue 11). MDPI AG. https://doi.org/10.3390/s18113605
  24. Shaukat, H., Ali, A., Bibi, S., Altabey, W. A., Noori, M., & Kouritem, S. A. (2023). A Review of the Recent Advances in Piezoelectric Materials, Energy Harvester Structures, and Their Applications in Analytical Chemistry. In Applied Sciences (Switzerland) (Vol. 13, Issue 3). MDPI. https://doi.org/10.3390/app13031300
  25. Sikdar, S., Singh, S. K., Malinowski, P., & Ostachowicz, W. (2022). Electromechanical impedance based debond localisation in a composite sandwich structure. Journal of Intelligent Material Systems and Structures, 33(12), 1487–1496. https://doi.org/10.1177/1045389X211057225
  26. Su, Y. F., Han, G., Amran, A., Nantung, T., & Lu, N. (2019). Instantaneous monitoring the early age properties of cementitious materials using PZT-based electromechanical impedance (EMI) technique. Construction and Building Materials, 225, 340–347. https://doi.org/10.1016/j.conbuildmat.2019.07.164
  27. Tiantong, P., Bongkarn, T., Rianyoi, R., & Julphunthong, P. (2022). Fabrication and characterisation of 0-3 KNLNTS piezoelectric ceramic/alite calcium sulfoaluminate cement composites. Journal of Materials Research and Technology, 19, 1563–1577. https://doi.org/10.1016/j.jmrt.2022.05.136
  28. Wang, J., Li, W., Luo, W., Wu, J., & Lan, C. (2022). Modeling and experimental validation of a quantitative bar-type corrosion measuring probe using piezoelectric stack and electromechanical impedance technique. Measurement: Journal of the International Measurement Confederation, 188. https://doi.org/10.1016/j.measurement.2021.110546
  29. Wu, C., Xiang, H., Jiang, S., & Ma, S. (2022). Stress Monitoring of Concrete via Uniaxial Piezoelectric Sensor. Sensors, 22(11). https://doi.org/10.3390/s22114041
  30. Ye, Y., Peng, L., Lin, Y., Liu, J., Lei, M., & Fei, R. (2020). EMI Technique for Monitoring the Damage Evolution of Initial Damaged Tunnel Invert Concrete Subjected to High Traffic Cyclic Loading. Advances in Civil Engineering, 2020. https://doi.org/10.1155/2020/7459895
  31. Zhang, F., Feng, P., Wang, T., & Chen, J. (2019). Mechanical-electric response characteristics of 1-3 cement based piezoelectric composite under impact loading. Construction and Building Materials, 228. https://doi.org/10.1016/j.conbuildmat.2019.116781
  32. Zhu, L., Wu, J., Chen, Y., Wang, J., & Li, W. (2024). Monitoring of cementitious materials hydration using 2–2 cement-based piezoelectric transducers based on electromechanical impedance method. Construction and Building Materials, 441. https://doi.org/10.1016/j.conbuildmat.2024.137274
DOI: https://doi.org/10.2478/cee-2026-0064 | Journal eISSN: 2199-6512 | Journal ISSN: 1336-5835
Language: English
Submitted on: Oct 9, 2025
|
Accepted on: Nov 5, 2025
|
Published on: Jan 18, 2026
Published by: University of Žilina
In partnership with: Paradigm Publishing Services
Publication frequency: 2 issues per year

© 2026 Gati Hayu, Wahyuniarsih Sutrisno, Kiki Wulandari, Priyo Suprobo, published by University of Žilina
This work is licensed under the Creative Commons Attribution 4.0 License.

AHEAD OF PRINT