Have a personal or library account? Click to login
A Study on Resilience Evaluation of Tunnel Construction Based on Mixed Methods Cover

A Study on Resilience Evaluation of Tunnel Construction Based on Mixed Methods

Open Access
|Jan 2026

References

  1. Yifan, L., Jianbo, G., Jian, P., Hongxin, S., Shuwen, X., Zhenyu, L., & Ming, Z. (2025). Strongly modulated response and bifurcation characteristics of a lever-type nonlinear energy sink [J]. Nonlinear Dynamics, 113(23), 32139-32166. DOI:10.1007/s11071-025-11797-7.
  2. Han-Peng, W., Shu-Cai, L. I., & Xue-Fen, Z. (2009). Damage analysis and optimum research on construction process for forked tunnel under bias pressure [J]. Yantu Lixue/Rock and Soil Mechanics, 30(6), 1705-1710. DOI:10.1109/CLEOEEQEC.2009.5194697.
  3. Yalin, G., Chen, D., Zheng, C., Shulei, Z., Wenhao, S., Wei, H., Lei, Z., Yiyuan, W., Nan, H., & Chun, G. (2025). Evaluation of greenhouse gas emissions in subway tunnel construction [J]. Underground Space. 22, 263-279. DOI: 10.1016/j.undsp.2024.12.001.
  4. Yang, S., Zhang, J., Xu, S., Deng, T., Qing He, A. M. A., & Wang, P. (2025). Work section planning for accompanying construction of extra-long tunnel and ballastless track of mountainous high-speed railways [J]. Journal of Construction Engineering and Management. 151(9). DOI: 10.1061/JCEMD4.COENG-16397.
  5. Dayong, H., Xingwu, Z., Lei, L., Hao, C., Dong, L., Zihai, Y., Xiaojie, C., & Jiajia, Y. (2025). Study on the construction method for in-situ expansion of existing large cross-section tunnels [J]. Discover Applied Sciences, 7(6). DOI:10.1007/s42452-025-07132-9.
  6. Luo, Y., Sun, H., Zhang, Z., Wang, W., & Zuo, L. (2024). Analytical optimization of the rotational inertia double tuned mass damper for structures under random excitation [J]. Structures, 69(000). DOI: 10.1016/j.istruc.2024.107462.
  7. Afrin, T., Aragon, L. G., Lin, Z., & Yodo, N. (2023). An Integrated Data-Driven Predictive Resilience Framework for Disaster Evacuation Traffic Management. Applied Sciences, 13(11), Article 11. https://doi.org/10.3390/app13116850.
  8. Deshpande, S., & Hedaoo, N. (2024). Evaluation of Face Stability for Mega Tunnel Under Varying Ground Strength Parameters. Civil and Environmental Engineering, 20(2), 720–729. https://doi.org/10.2478/cee-2024-0054.
  9. Hai, N., Gong, D., Liu, S., & Dai, Z. (2022). Dynamic coupling risk assessment model of utility tunnels based on multimethod fusion. Reliability Engineering & System Safety, 228, 108773. https://doi.org/10.1016/j.ress.2022.108773.
  10. Hodas, S., Pultznerova, A., & Vrchovsky, E. (2023). Experimental Monitoring of Transition Zones in Railway Tunnels. Civil and Environmental Engineering, 19(2), 464–473. https://doi.org/10.2478/cee-2023-0042.
  11. Holling, C. S. (1973). Resilience and Stability of Ecological Systems. Annual Review of Ecology and Systematics, 4(1), 1–23. https://doi.org/10.1146/annurev.es.04.110173.000245.
  12. Liu, N., Guo, D., Song, Z., Zhong, S., & Hu, R. (2023). BIM-based digital platform and risk management system for mountain tunnel construction. Scientific Reports, 13(1), Article 1. https://doi.org/10.1038/s41598-023-34525-w.
  13. MacAskill, K., & Guthrie, P. (2014). Multiple Interpretations of Resilience in Disaster Risk Management. Procedia Economics and Finance, 18, 667–674. https://doi.org/10.1016/S2212-5671(14)00989-7.
  14. Mikaeil, R., Shaffiee Haghshenas, S., & Sedaghati, Z. (2019). Geotechnical risk evaluation of tunneling projects using optimization techniques (case study: The second part of Emamzade Hashem tunnel). Natural Hazards, 97(3), 1099–1113. https://doi.org/10.1007/s11069-019-03688-z.
  15. Nicolosi, V., Augeri, M., D’Apuzzo, M., Evangelisti, A., & Santilli, D. (2022). A Probabilistic Approach to the Evaluation of Seismic Resilience in Road Asset Management. International Journal of Disaster Risk Science, 13(1), 114–124. https://doi.org/10.1007/s13753-022-00395-5.
  16. Paraskevopoulou, C., Dallavalle, M., Konstantis, S., Spyridis, P., & Benardos, A. (2022). Assessing the failure potential of tunnels and the impacts on cost overruns and project delays. Tunnelling and Underground Space Technology, 123, 104443. https://doi.org/10.1016/j.tust.2022.104443.
  17. Qiang, W., Jiaqi, L., Jingchun, W., & Peng, W. (2021). Evaluation of safety resilience in tunnel construction based on ideal fuzzy matter element. China Safety Science Journal, 31(8), 62–68. https://doi.org/10.16265/j.cnki.issn1003-3033.2021.08.009.
  18. Rehak, D., Senovsky, P., Hromada, M., & Lovecek, T. (2019). Complex approach to assessing resilience of critical infrastructure elements. International Journal of Critical Infrastructure Protection, 25, 125–138. https://doi.org/10.1016/j.ijcip.2019.03.003.
  19. Saikia, P., Beane, G., Garriga, R. G., Avello, P., Ellis, L., Fisher, S., Leten, J., Ruiz-Apilánez, I., Shouler, M., Ward, R., & Jiménez, A. (2022). City Water Resilience Framework: A governance-based planning tool to enhance urban water resilience. Sustainable Cities and Society, 77, 103497. https://doi.org/10.1016/j.scs.2021.103497.
  20. Luo, Y., Qian, F., Sun, H., Wang, X., Chen, A., & Zuo, L. (2023). Rigid-flexible coupling multi-body dynamics modeling of a semi-submersible floating offshore wind turbine [J]. Ocean Engineering, 281, 114648. DOI10.1016/j.oceaneng.2023.114648.
  21. Sharafat, A., Latif, K., & Seo, J. (2021). Risk analysis of TBM tunneling projects based on generic bow-tie risk analysis approach in difficult ground conditions. Tunnelling and Underground Space Technology, 111, 103860. https://doi.org/10.1016/j.tust.2021.103860.
  22. Vinogradova-Zinkevič, I., Podvezko, V., & Zavadskas, E. K. (2021). Comparative Assessment of the Stability of AHP and FAHP Methods. Symmetry, 13(3), 479. https://doi.org/10.3390/sym13030479.
  23. Yifan, L., Hongxin, S., Lauren, H., Lambert, D., Okuda, R., Wenxi, W., Biao, F., & Lei, Z. (2024). Vibration control for a semi-submersible floating offshore wind turbine with optimal ultra-low frequency electromagnetic tuned inerter-mass dampers [J]. Structures, 63, 106296. DOI10.1016/j.istruc.2024.106296.
  24. Zhenqi, Z. (2022). Research on identification, measurement and improvement of safety resilience of deep foundation pit system [Master’s thesis, Southeast University, Nanjing]. https://doi.org/10.27014/d.cnki.gdnau.2022.002762.
DOI: https://doi.org/10.2478/cee-2026-0060 | Journal eISSN: 2199-6512 | Journal ISSN: 1336-5835
Language: English
Submitted on: Aug 4, 2025
|
Accepted on: Oct 14, 2025
|
Published on: Jan 18, 2026
Published by: University of Žilina
In partnership with: Paradigm Publishing Services
Publication frequency: 2 issues per year

© 2026 Jianglin Gu, Dongwen Pan, Hanqiang Tang, published by University of Žilina
This work is licensed under the Creative Commons Attribution 4.0 License.

AHEAD OF PRINT