Have a personal or library account? Click to login
Numerical Investigation of Shear Response Lightweight Concrete Beams Strengthened with CFRP Reinforcement Cover

Numerical Investigation of Shear Response Lightweight Concrete Beams Strengthened with CFRP Reinforcement

Open Access
|Nov 2025

References

  1. Agamy, M. H., Mostafa, I. T., Hadhood, A., Abd-Elaziz, A. M., & Ayash, N. M. (2025). Behavioral insights into beams shear strengthened with externally bonded and mechanically fastened CFRP strips. Structures, 78, 109299. https://doi.org/10.1016/j.istruc.2025.109299
  2. Alhamad, S., Al Banna, Y., Al Osman, A., Mouthassseeb, J., Abdalla, S., & Abed, F. (2017). Effect of shear span-to-depth ratio on the shear behavior of BFRP-RC deep beams. MATEC Web of Conferences, 120, 01012. https://doi.org/10.1051/matecconf/201712001012
  3. Al-Allaf, M. H., Daud, R. A., & Daud, S. A. (2024). Nonlinear finite element analysis of concrete corbels with hybrid reinforcements. Mechanics of Advanced Materials and Structures, 1–11. https://doi.org/10.1080/15376494.2024.2420910
  4. Al-Allaf, M. H., Weekes, L., & Augusthus-Nelson, L. (2015). Experimental study on bond-slip behaviour between CFRP sheets and lightweight concrete. In Proceedings of the 8th Biennial Conference on Advanced Composites in Construction (ACIC 2015), Cambridge, UK. http://acic-conference.com/
  5. Al-Allaf, M. H., Weekes, L., & Augusthus-Nelson, L. (2019). Shear behaviour of lightweight concrete beams strengthened with CFRP composite. Magazine of Concrete Research, 71(18), 949–964. https://doi.org/10.1680/jmacr.17.00488
  6. Al-Allaf, M. H., Weekes, L., Augusthus-Nelson, L., & Leach, P. (2016). An experimental investigation into the bond-slip behaviour between CFRP composite and lightweight concrete. Construction and Building Materials, 113, 15–27. https://doi.org/10.1016/j.conbuildmat.2016.03.032
  7. Abed, A.-M. O., & Daud, S. A. (2024). Flexure behaviour of corroded reinforced concrete beams under sustained loads. Civil and Environmental Engineering, 20(2), 1162–1173. https://doi.org/10.2478/cee-2024-0085.
  8. Al-Rousan, R. Z., & Issa, M. A. (2016). The effect of beam depth on the shear behavior of reinforced concrete beams externally strengthened with carbon fiber–reinforced polymer composites. Advances in Structural Engineering, 19(11), 1769–1779. https://doi.org/10.1177/1369433216649386
  9. Anil, Ö. (2006). Improving shear capacity of RC T-beams using CFRP composites subjected to cyclic load. Cement and Concrete Composites, 28(7), 638–649. https://doi.org/10.1016/j.cemconcomp.2006.04.004
  10. Azam, R., Soudki, K., West, J. S., & Noël, M. (2017). Strengthening of shear-critical RC beams: Alternatives to externally bonded CFRP sheets. Construction and Building Materials, 151, 494–503. https://doi.org/10.1016/j.conbuildmat.2017.06.106
  11. Barros, J. A., Dias, S. J., & Lima, J. L. (2007). Efficacy of CFRP-based techniques for the flexural and shear strengthening of concrete beams. Cement and Concrete Composites, 29(3), 203–217. https://doi.org/10.1016/j.cemconcomp.2006.09.001
  12. Bouziadi, F., Haddi, A., Tahenni, T., Boulekbache, B., Hamrat, M., Naser, M. Z., & Amziane, S. (2023). Development of a local bond shear stress-slip model of RC beams externally strengthened with FRP materials. Journal of Composite Materials, 57(14), 2261–2285. https://doi.org/10.1177/00219983231170047
  13. Bukhari, I. A., Vollum, R. L., Ahmad, S., & Sagaseta, J. (2010). Shear strengthening of reinforced concrete beams with CFRP. Magazine of Concrete Research, 62(1), 65–77. https://doi.org/10.1680/macr.2008.62.1.65
  14. Cosgun, T. (2016). An experimental study of RC beams with varying concrete strength classes externally strengthened with CFRP composites. Journal of Engineered Fibers and Fabrics, 11(3), 155892501601100302. https://doi.org/10.1177/155892501601100302
  15. Daud, R. A., Daud, S., Al-Allaf, M. H., & Alrshoudi, F. (2025). Behaviour of slabs under impact loading: A review. Al-Nahrain Journal for Engineering Sciences, 28(1), 129–137. https://doi.org/10.29194/NJES.28010129
  16. Foster, R. M., Brindley, M., Lees, J. M., Ibell, T. J., Morley, C. T., Darby, A. P., & Evernden, M. C. (2017). Experimental investigation of reinforced concrete T-beams strengthened in shear with externally bonded CFRP sheets. Journal of Composites for Construction, 21(2), 04016086. https://doi.org/10.1061/(ASCE)CC.1943-5614.0000743
  17. Godat, A., Qu, Z., Lu, X. Z., Labossiere, P., Ye, L. P., & Neale, K. W. (2010). Size effects for reinforced concrete beams strengthened in shear with CFRP strips. Journal of Composites for Construction, 14(3), 260–271. https://doi.org/10.1061/(ASCE)CC.1943-5614.0000072
  18. Hameed, M. O., & Daud, R. A. (2024). Behavior of fatigue damaged reinforced concrete one-way slabs repaired with CFRP sheets. Civil and Environmental Engineering, 20(1), 364–376. https://doi.org/10.2478/cee-2024-0028
  19. Hamid, N. A. A., Salleh, N., Ali, N., Jamellodin, Z., Adnan, S. H., Chai, J. Y., & Ching, V. V. S. (2024). Strengthening RC beams with circular post-opening in shear zone by externally bonded CFRP. IOP Conference Series: Earth and Environmental Science, 1347(1), 012073. https://doi.org/10.1088/1755-1315/1347/1/012073
  20. Hamoda, A., Yehia, S. A., Abadel, A. A., Sennah, K., & Shahin, R. I. (2025). Strengthening of simply supported deep beams with openings using steel-reinforced ECC and externally bonded CFRP sheets. Magazine of Concrete Research, 77(3–4), 154–170. https://doi.org/10.1680/jmacr.24.00146
  21. Jin, L., Xia, H., Jiang, X. A., & Du, X. (2020). Size effect on shear failure of CFRP-strengthened concrete beams without web reinforcement: Meso-scale simulation and formulation. Composite Structures, 236, 111895. https://doi.org/10.1016/j.compstruct.2020.111895
  22. Jumaa, G. B., & Yousif, A. R. (2019). Numerical modeling of size effect in shear strength of FRP-reinforced concrete beams. Structures, 20, 237–254. https://doi.org/10.1016/j.istruc.2019.04.008
  23. Kopiika, N., Blikharskyy, Y., Selejdak, J., Khmil, R., Blikharskyy, Z., & Katunsky, D. (2024). CFRP materials for restoration of the bearing capacity of RC beams with damaged rebar. Journal of Engineering, 2024(1), 4915391. https://doi.org/10.1155/2024/4915391
  24. Kopiika, N., Blikharskyy, Y., Sobko, Y., Khmil, R., & Blikharskyy, Z. (2025). Impact of CFRP-strengthening on crack formation in RC structures. IOP Conference Series: Earth and Environmental Science, 1499(1), 012021. https://doi.org/10.1088/1755-1315/1499/1/012021
  25. Kopiika, N., Robery, P., Ninic, J., & Mitoulis, S. A. (2025). Remaining life of ageing RC infrastructure for sustainable development: Deterioration under climate change. Case Studies in Construction Materials, 22, e04757. https://doi.org/10.1016/j.cscm.2025.e04757
  26. Lateef, H. E., Al-Allaf, M. H., & Daud, R. A. (2024). Experimental study on bond-slip behavior of NSM-CFRP plate and recycled aggregates concrete substrate. Innovative Infrastructure Solutions, 9(10), 368. https://doi.org/10.1007/s41062-024-01699-9
  27. Li, A., Assih, J., & Delmas, Y. (2001). Shear strengthening of RC beams with externally bonded CFRP sheets. Journal of Structural Engineering, 127(4), 374–380. https://doi.org/10.1061/(ASCE)0733-9445(2001)127:4(374)
  28. Lo, T. Y., Tang, W. C., & Cui, H. Z. (2007). The effects of aggregate properties on lightweight concrete. Building and Environment, 42(8), 3025–3029. https://doi.org/10.1016/j.buildenv.2005.06.031
  29. Ma, S., Sun, J., & Xu, T. (2025). Numerical analysis of shear contribution of CFRP-strengthened RC beams by different bond-slip models. International Journal of Concrete Structures and Materials, 19(1), 4. https://doi.org/10.1186/s40069-024-00728-2
  30. Maalej, M., & Leong, K. S. (2005). Effect of beam size and FRP thickness on interfacial shear stress concentration and failure mode of FRP-strengthened beams. Composites Science and Technology, 65(7–8), 1148–1158. https://doi.org/10.1016/j.compscitech.2004.11.010
  31. Mejía, N., Sarango, A., & Espinosa, A. (2024). Flexural and shear strengthening of RC beams reinforced with externally bonded CFRP laminates postfire exposure by experimental and analytical investigations. Engineering Structures, 308, 117995. https://doi.org/10.1016/j.engstruct.2024.117995
  32. Mhanna, H. H., Hawileh, R. A., & Abdalla, J. A. (2019). Shear strengthening of reinforced concrete beams using CFRP wraps. Procedia Structural Integrity, 17, 214–221. https://doi.org/10.1016/j.prostr.2019.08.029
  33. Obaidat, Y. T., Heyden, S., & Dahlblom, O. (2010). The effect of CFRP and CFRP/concrete interface models when modelling retrofitted RC beams with FEM. Composite Structures, 92(6), 1391–1398. https://doi.org/10.1016/j.compstruct.2009.11.008
  34. Osman, B. H., Wu, E., Ji, B., & Abdulhameed, S. S. (2018). Effect of reinforcement ratios on shear behavior of concrete beams strengthened with CFRP sheets. HBRC Journal, 14(1), 29–36. https://doi.org/10.1016/j.hbrcj.2016.04.002
  35. Ouezdou, M. B., Belarbi, A., & Bae, S. W. (2009). Effective bond length of FRP sheets externally bonded to concrete. International Journal of Concrete Structures and Materials, 3(2), 127–131. https://doi.org/10.4334/IJCSM.2009.3.2.127
  36. Rahman, J., Arafin, P., & Billah, A. M. (2023). Machine learning models for predicting concrete beams shear strength externally bonded with FRP. Structures, 53, 514–536. https://doi.org/10.1016/j.istruc.2023.04.069
  37. Saadoon, A. S. (2019). Effect of CFRP strips orientation on performance of strengthened deep beams. Al-Qadisiyah Journal for Engineering Sciences, 12(3), 172–177. https://doi.org/10.30772/qjes.v12i3.614
  38. Sakbana, A., & Mashreib, M. (2020). Finite element analysis of CFRP-reinforced concrete beams. Revista Ingeniería de Construction, 35(2), 148–169.
  39. Spadea, G., Bencardino, F., & Swamy, R. N. (1998). Structural behavior of composite RC beams with externally bonded CFRP. Journal of Composites for Construction, 2(3), 132–137. https://doi.org/10.1061/(ASCE)1090-0268(1998)2:3(132)
  40. Tanarslan, H. M., & Altin, S. (2010). Behavior of RC T-section beams strengthened with CFRP strips subjected to cyclic load. Materials and Structures, 43(4), 529–542. https://doi.org/10.1617/s11527-009-9509-8
  41. Tawfik, A. B., Rady, M., & Mahfouz, S. Y. (2025). Finite element modeling for the flexural response of notched concrete beams enhanced with steel and carbon fiber reinforced polymer bars under cyclic loading. Mechanics of Advanced Materials and Structures, 1–19. https://doi.org/10.1080/15376494.2025.2492311
  42. Waqas, R. M., Elahi, A., & Kirgiz, M. S. (2025). Experimental and finite element analysis of shear deficient reinforced concrete beam retrofitted externally with carbon fiber reinforced polymer sheet. Structures, 72, 108232. https://doi.org/10.1016/j.istruc.2025.108232
  43. Yu, Q. L., Spiesz, P., & Brouwers, H. J. H. (2015). Ultra-lightweight concrete: Conceptual design and performance evaluation. Cement and Concrete Composites, 61, 18–28. https://doi.org/10.1016/j.cemconcomp.2015.04.012
DOI: https://doi.org/10.2478/cee-2026-0038 | Journal eISSN: 2199-6512 | Journal ISSN: 1336-5835
Language: English
Submitted on: Aug 24, 2025
Accepted on: Sep 15, 2025
Published on: Nov 12, 2025
Published by: University of Žilina
In partnership with: Paradigm Publishing Services
Publication frequency: 2 issues per year

© 2025 Khalel Raid, Mohammed Elwi, Mohammed Raji Mohammed Al-Alusi, published by University of Žilina
This work is licensed under the Creative Commons Attribution 4.0 License.

AHEAD OF PRINT