References
- Aldea, S., Bazaez, R., Astroza, R., & Hernandez, F. (2021). Seismic fragility assessment of Chilean skewed highway bridges. Engineering Structures, 249, 113300. https://doi.org/10.1016/j.engstruct.2021.113300
- American Society of Civil Engineers. (2017). Minimum Design Loads and Associated Criteria for Buildings and Other Structures (7th ed.). American Society of Civil Engineers. https://doi.org/10.1061/9780784414248
- Awchat, Ganesh, et al. “Incremental Dynamic Analysis and Seismic Fragility Analysis of Reinforced Concrete Frame” Civil and Environmental Engineering, vol. 19, no. 1, Sciendo, 2023, pp. 444-451. https://doi.org/10.2478/cee-2023-0039
- Barbat, A. H., Vargas, Y. F., Pujades, L. G., & Hurtado, J. E. (n.d.). Probabilistic assessment of the seismic damage in reinforced concrete buildings.
- Chomchuen, P., & Boonyapinyo, V. (2017). Incremental dynamic analysis with multi-modes for seismic performance evaluation of RC bridges. Engineering Structures, 132, 29–43. https://doi.org/10.1016/j.engstruct.2016.11.026
- Chopra, A. K., & Goel, R. K. (2002). A modal pushover analysis procedure for estimating seismic demands for buildings. Earthquake Engineering & Structural Dynamics, 31(3), 561–582. https://doi.org/10.1002/eqe.144
- Farhan, M. (2020). Pushover Analysis of Reinforced Concrete Bridge Pier Designed as Per IRC-6 Codal Provision. 10.
- Htay, K. T., Masrilayanti, Tanjung, J., & Olivia, M. (2025). Fragility Curves Assessment on Multi-Span Reinforced Concrete Bridge by Using Incremental Dynamic Analysis. IOP Conference Series: Earth and Environmental Science, 1444(1), 012020. https://doi.org/10.1088/1755-1315/1444/1/012020
- Htay, K. T., Tanjung, J., Masrilayanti, Olivia, M., Mohamed Nazri, F., & Bur, M. (2024). A Proposed Fragility Curve Based on PO-ID Hybrid Analysis for Seismic Assessment Performance of the Reinforced Concrete Continuous Bridges in Earthquake Prone Area. Buildings, 14(12), 3875. https://doi.org/10.3390/buildings14123875
- Hurukawa, N., & Maung Maung, P. (2011). Two seismic gaps on the Sagaing Fault, Myanmar, derived from relocation of historical earthquakes since 1918: TWO SEISMIC GAPS ON THE SAGAING FAULT. Geophysical Research Letters, 38(1), n/a-n/a. https://doi.org/10.1029/2010GL046099
- Kabir, M. R., Billah, A. H. M. M., & Alam, M. S. (2019). Seismic fragility assessment of a multi-span RC bridge in Bangladesh considering near-fault, far-field and long duration ground motions. Structures, 19, 333–348. https://doi.org/10.1016/j.istruc.2019.01.021
- Karim, K. R., & Yamazaki, F. (2003). A simplified method of constructing fragility curves for highway bridges. Earthquake Engineering & Structural Dynamics, 32(10), 1603–1626. https://doi.org/10.1002/eqe.291
- Leslie, R. (n.d.). The Pushover Analysis, explained in its Simplicity.
- Liu, Z., Liu, Z., Ai, Q., Ruan, X., & Tan, C. (2023). Global reliability evaluation of a high-pier long-span continuous RC rigid frame bridge subjected to multi-point and multi-component stochastic ground motions. Soil Dynamics and Earthquake Engineering, 164, 107623. https://doi.org/10.1016/j.soildyn.2022.107623
- Llanes-Tizoc, M. D., Reyes-Salazar, A., Bojorquez, E., Bojorquez, J., Lopez-Barraza, A., Rivera-Salas, J. L., & Gaxiola-Camacho, J. R. (2019). Local, Story, and Global Ductility Evaluation for Complex 2D Steel Buildings: Pushover and Dynamic Analysis. Applied Sciences, 9(1), 200. https://doi.org/10.3390/app9010200
- Mangalathu, S., Hwang, S.-H., Choi, E., & Jeon, J.-S. (2019). Rapid seismic damage evaluation of bridge portfolios using machine learning techniques. Engineering Structures, 201, 109785. https://doi.org/10.1016/j.engstruct.2019.109785
- Masrilayanti, Rahmadona, & Kurniawan, R. (2021). Seismic vulnerability assessment of three spans girder bridge in Kuranji - Padang by developing fragility curve. IOP Conference Series: Earth and Environmental Science, 708(1). https://doi.org/10.1088/1755-1315/708/1/012006
- Miari, M. (2019). Short Review on Incremental Dynamic Analysis and Fragility Assessment. Advancements in Civil Engineering & Technology, 3(2). https://doi.org/10.31031/ACET.2019.03.000556
- Mitchell, D., & Paultre, P. (1994). Ductility and overstrength in seismic design of reinforced concrete structures. Canadian Journal of Civil Engineering, 21(6), 1049–1060. https://doi.org/10.1139/l94-109
- MNBC, 2020. (n.d.).
- MYO AUNG. (2012). Aung, M. Myanmar Sagaing Fault. Presentation, November 2012. DOI: 10.13140/RG.2.1.1011.6729. Available online: Https://www.researchgate.net/publication/304041977. Presentation. https://doi.org/10.13140/RG.2.1.1011.6729
- Nazri, F. M. (2018). Seismic Fragility Assessment for Buildings due to Earthquake Excitation. Springer Singapore. https://doi.org/10.1007/978-981-10-7125-6
- Nettis, A., Iacovazzo, P., Raffaele, D., Uva, G., & Adam, J. M. (2022). Displacement-based seismic performance assessment of multi-span steel truss bridges. Engineering Structures, 254, 113832. https://doi.org/10.1016/j.engstruct.2021.113832
- Olivia, M., & Mandal, P. (2005). Curvature Ductility of Reinforced Concrete Beams at High Strain Rates. 6(1).
- PEER Ground Motion Database—PEER Center. (n.d.). Retrieved January 20, 2025, from https://ngawest2.berkeley.edu/spectras/new?sourceDb_flag=1
- Pujari, N., MandalLala, T., Ghosh, S., & Lala, S. (2014). Optimisation of IDA-based fragility curves. In G. Deodatis, B. Ellingwood, & D. Frangopol (Eds.), Safety, Reliability, Risk and Life-Cycle Performance of Structures and Infrastructures (pp. 4435–4440). CRC Press. https://doi.org/10.1201/b16387-641
- Rakshe, R. (n.d.). Incremental dynamic analysis and static pushover analysis of existing RC framed buildings using the seismostruct software.
- Reyes, J. C., Riaño, A. C., Kalkan, E., Quintero, O. A., & Arango, C. M. (2014). Assessment of spectrum matching procedure for nonlinear analysis of symmetric- and asymmetric-plan buildings. Engineering Structures, 72, 171–181. https://doi.org/10.1016/j.engstruct.2014.04.035
- Seismosoft Earthquake Engineering Software Solutions. (n.d.). Seismosoft. Retrieved January 20, 2025, from https://seismosoft.com/
- Shabani, A., Zucconi, M., Kazemian, D., & Kioumarsi, M. (2023). Seismic fragility analysis of low-rise unreinforced masonry buildings subjected to near- and far-field ground motions. Results in Engineering, 18, 101221. https://doi.org/10.1016/j.rineng.2023.101221
- Somerville, P., Irikura, K., Graves, R., Sawada, S., Wald, D., Abrahamson, N., Iwasaki, Y., Kagawa, T., Smith, N., & Kowada, A. (1999). Characterizing Crustal Earthquake Slip Models for the Prediction of Strong Ground Motion. Seismological Research Letters, 70(1), 59–80. https://doi.org/10.1785/gssrl.70.1.59
- Tanjung, J., Masrilayanti, M., Nazri, F. M., Bur, M., Elfitri, I., Olivia, M., Htay, K. T., Amida, S., & Kurniawan, R. (2024). Evaluation of PCI girder monolith in strong earthquake area using nonlinear time history analysis. 080038. https://doi.org/10.1063/5.0199779
- Vamvatsikos, D., & Cornell, C. A. (2002). Incremental dynamic analysis. Earthquake Engineering & Structural Dynamics, 31(3), 491–514. https://doi.org/10.1002/eqe.141
- Xhaferaj, Iralda, et al. “Seismic Risk Assessment of Simply Supported Girders Bridges” Civil and Environmental Engineering, vol. 19, no. 1, Sciendo, 2023, pp. 30-38. https://doi.org/10.2478/cee-2023-0003
- Xiong, X., Shan, B., Zhou, Y. M., Wei, S. J., Li, Y. D., Wang, R. J., & Zheng, Y. (2017). Coulomb stress transfer and accumulation on the Sagaing Fault, Myanmar, over the past 110 years and its implications for seismic hazard. Geophysical Research Letters, 44(10), 4781–4789. https://doi.org/10.1002/2017GL072770
- Zhong, J., Zhang, J., Zhi, X., & Fan, F. (2019). Probabilistic seismic demand and capacity models and fragility curves for reticulated structures under far-field ground motions. Thin-Walled Structures, 137, 436–447. https://doi.org/10.1016/j.tws.2019.01.032
- Zuher, M. H., Nasution, A. P., Sidiq, Z. N., Masrilayanti, M., & Tanjung, J. (2023). Fragility Assesment of Mid-Rise RC Building using HAZUS Method in High Seismic Zone. Jurnal Bangunan, Konstruksi & Desain, 1(2), 79–89. https://doi.org/10.25077/jbkd.1.2.79-89.2023
