Have a personal or library account? Click to login
Assessing Seismic Risk in Sagaing City: A Case Study of Incremental Dynamic and Pushover Analyses on Multi-Span Reinforced Concrete Bridge Pier Cover

Assessing Seismic Risk in Sagaing City: A Case Study of Incremental Dynamic and Pushover Analyses on Multi-Span Reinforced Concrete Bridge Pier

Open Access
|Nov 2025

References

  1. Aldea, S., Bazaez, R., Astroza, R., & Hernandez, F. (2021). Seismic fragility assessment of Chilean skewed highway bridges. Engineering Structures, 249, 113300. https://doi.org/10.1016/j.engstruct.2021.113300
  2. American Society of Civil Engineers. (2017). Minimum Design Loads and Associated Criteria for Buildings and Other Structures (7th ed.). American Society of Civil Engineers. https://doi.org/10.1061/9780784414248
  3. Awchat, Ganesh, et al. “Incremental Dynamic Analysis and Seismic Fragility Analysis of Reinforced Concrete Frame” Civil and Environmental Engineering, vol. 19, no. 1, Sciendo, 2023, pp. 444-451. https://doi.org/10.2478/cee-2023-0039
  4. Barbat, A. H., Vargas, Y. F., Pujades, L. G., & Hurtado, J. E. (n.d.). Probabilistic assessment of the seismic damage in reinforced concrete buildings.
  5. Chomchuen, P., & Boonyapinyo, V. (2017). Incremental dynamic analysis with multi-modes for seismic performance evaluation of RC bridges. Engineering Structures, 132, 29–43. https://doi.org/10.1016/j.engstruct.2016.11.026
  6. Chopra, A. K., & Goel, R. K. (2002). A modal pushover analysis procedure for estimating seismic demands for buildings. Earthquake Engineering & Structural Dynamics, 31(3), 561–582. https://doi.org/10.1002/eqe.144
  7. Farhan, M. (2020). Pushover Analysis of Reinforced Concrete Bridge Pier Designed as Per IRC-6 Codal Provision. 10.
  8. Htay, K. T., Masrilayanti, Tanjung, J., & Olivia, M. (2025). Fragility Curves Assessment on Multi-Span Reinforced Concrete Bridge by Using Incremental Dynamic Analysis. IOP Conference Series: Earth and Environmental Science, 1444(1), 012020. https://doi.org/10.1088/1755-1315/1444/1/012020
  9. Htay, K. T., Tanjung, J., Masrilayanti, Olivia, M., Mohamed Nazri, F., & Bur, M. (2024). A Proposed Fragility Curve Based on PO-ID Hybrid Analysis for Seismic Assessment Performance of the Reinforced Concrete Continuous Bridges in Earthquake Prone Area. Buildings, 14(12), 3875. https://doi.org/10.3390/buildings14123875
  10. Hurukawa, N., & Maung Maung, P. (2011). Two seismic gaps on the Sagaing Fault, Myanmar, derived from relocation of historical earthquakes since 1918: TWO SEISMIC GAPS ON THE SAGAING FAULT. Geophysical Research Letters, 38(1), n/a-n/a. https://doi.org/10.1029/2010GL046099
  11. Kabir, M. R., Billah, A. H. M. M., & Alam, M. S. (2019). Seismic fragility assessment of a multi-span RC bridge in Bangladesh considering near-fault, far-field and long duration ground motions. Structures, 19, 333–348. https://doi.org/10.1016/j.istruc.2019.01.021
  12. Karim, K. R., & Yamazaki, F. (2003). A simplified method of constructing fragility curves for highway bridges. Earthquake Engineering & Structural Dynamics, 32(10), 1603–1626. https://doi.org/10.1002/eqe.291
  13. Leslie, R. (n.d.). The Pushover Analysis, explained in its Simplicity.
  14. Liu, Z., Liu, Z., Ai, Q., Ruan, X., & Tan, C. (2023). Global reliability evaluation of a high-pier long-span continuous RC rigid frame bridge subjected to multi-point and multi-component stochastic ground motions. Soil Dynamics and Earthquake Engineering, 164, 107623. https://doi.org/10.1016/j.soildyn.2022.107623
  15. Llanes-Tizoc, M. D., Reyes-Salazar, A., Bojorquez, E., Bojorquez, J., Lopez-Barraza, A., Rivera-Salas, J. L., & Gaxiola-Camacho, J. R. (2019). Local, Story, and Global Ductility Evaluation for Complex 2D Steel Buildings: Pushover and Dynamic Analysis. Applied Sciences, 9(1), 200. https://doi.org/10.3390/app9010200
  16. Mangalathu, S., Hwang, S.-H., Choi, E., & Jeon, J.-S. (2019). Rapid seismic damage evaluation of bridge portfolios using machine learning techniques. Engineering Structures, 201, 109785. https://doi.org/10.1016/j.engstruct.2019.109785
  17. Masrilayanti, Rahmadona, & Kurniawan, R. (2021). Seismic vulnerability assessment of three spans girder bridge in Kuranji - Padang by developing fragility curve. IOP Conference Series: Earth and Environmental Science, 708(1). https://doi.org/10.1088/1755-1315/708/1/012006
  18. Miari, M. (2019). Short Review on Incremental Dynamic Analysis and Fragility Assessment. Advancements in Civil Engineering & Technology, 3(2). https://doi.org/10.31031/ACET.2019.03.000556
  19. Mitchell, D., & Paultre, P. (1994). Ductility and overstrength in seismic design of reinforced concrete structures. Canadian Journal of Civil Engineering, 21(6), 1049–1060. https://doi.org/10.1139/l94-109
  20. MNBC, 2020. (n.d.).
  21. MYO AUNG. (2012). Aung, M. Myanmar Sagaing Fault. Presentation, November 2012. DOI: 10.13140/RG.2.1.1011.6729. Available online: Https://www.researchgate.net/publication/304041977. Presentation. https://doi.org/10.13140/RG.2.1.1011.6729
  22. Nazri, F. M. (2018). Seismic Fragility Assessment for Buildings due to Earthquake Excitation. Springer Singapore. https://doi.org/10.1007/978-981-10-7125-6
  23. Nettis, A., Iacovazzo, P., Raffaele, D., Uva, G., & Adam, J. M. (2022). Displacement-based seismic performance assessment of multi-span steel truss bridges. Engineering Structures, 254, 113832. https://doi.org/10.1016/j.engstruct.2021.113832
  24. Olivia, M., & Mandal, P. (2005). Curvature Ductility of Reinforced Concrete Beams at High Strain Rates. 6(1).
  25. PEER Ground Motion Database—PEER Center. (n.d.). Retrieved January 20, 2025, from https://ngawest2.berkeley.edu/spectras/new?sourceDb_flag=1
  26. Pujari, N., MandalLala, T., Ghosh, S., & Lala, S. (2014). Optimisation of IDA-based fragility curves. In G. Deodatis, B. Ellingwood, & D. Frangopol (Eds.), Safety, Reliability, Risk and Life-Cycle Performance of Structures and Infrastructures (pp. 4435–4440). CRC Press. https://doi.org/10.1201/b16387-641
  27. Rakshe, R. (n.d.). Incremental dynamic analysis and static pushover analysis of existing RC framed buildings using the seismostruct software.
  28. Reyes, J. C., Riaño, A. C., Kalkan, E., Quintero, O. A., & Arango, C. M. (2014). Assessment of spectrum matching procedure for nonlinear analysis of symmetric- and asymmetric-plan buildings. Engineering Structures, 72, 171–181. https://doi.org/10.1016/j.engstruct.2014.04.035
  29. Seismosoft Earthquake Engineering Software Solutions. (n.d.). Seismosoft. Retrieved January 20, 2025, from https://seismosoft.com/
  30. Shabani, A., Zucconi, M., Kazemian, D., & Kioumarsi, M. (2023). Seismic fragility analysis of low-rise unreinforced masonry buildings subjected to near- and far-field ground motions. Results in Engineering, 18, 101221. https://doi.org/10.1016/j.rineng.2023.101221
  31. Somerville, P., Irikura, K., Graves, R., Sawada, S., Wald, D., Abrahamson, N., Iwasaki, Y., Kagawa, T., Smith, N., & Kowada, A. (1999). Characterizing Crustal Earthquake Slip Models for the Prediction of Strong Ground Motion. Seismological Research Letters, 70(1), 59–80. https://doi.org/10.1785/gssrl.70.1.59
  32. Tanjung, J., Masrilayanti, M., Nazri, F. M., Bur, M., Elfitri, I., Olivia, M., Htay, K. T., Amida, S., & Kurniawan, R. (2024). Evaluation of PCI girder monolith in strong earthquake area using nonlinear time history analysis. 080038. https://doi.org/10.1063/5.0199779
  33. Vamvatsikos, D., & Cornell, C. A. (2002). Incremental dynamic analysis. Earthquake Engineering & Structural Dynamics, 31(3), 491–514. https://doi.org/10.1002/eqe.141
  34. Xhaferaj, Iralda, et al. “Seismic Risk Assessment of Simply Supported Girders Bridges” Civil and Environmental Engineering, vol. 19, no. 1, Sciendo, 2023, pp. 30-38. https://doi.org/10.2478/cee-2023-0003
  35. Xiong, X., Shan, B., Zhou, Y. M., Wei, S. J., Li, Y. D., Wang, R. J., & Zheng, Y. (2017). Coulomb stress transfer and accumulation on the Sagaing Fault, Myanmar, over the past 110 years and its implications for seismic hazard. Geophysical Research Letters, 44(10), 4781–4789. https://doi.org/10.1002/2017GL072770
  36. Zhong, J., Zhang, J., Zhi, X., & Fan, F. (2019). Probabilistic seismic demand and capacity models and fragility curves for reticulated structures under far-field ground motions. Thin-Walled Structures, 137, 436–447. https://doi.org/10.1016/j.tws.2019.01.032
  37. Zuher, M. H., Nasution, A. P., Sidiq, Z. N., Masrilayanti, M., & Tanjung, J. (2023). Fragility Assesment of Mid-Rise RC Building using HAZUS Method in High Seismic Zone. Jurnal Bangunan, Konstruksi & Desain, 1(2), 79–89. https://doi.org/10.25077/jbkd.1.2.79-89.2023
DOI: https://doi.org/10.2478/cee-2026-0033 | Journal eISSN: 2199-6512 | Journal ISSN: 1336-5835
Language: English
Submitted on: Aug 14, 2025
Accepted on: Oct 3, 2025
Published on: Nov 12, 2025
Published by: University of Žilina
In partnership with: Paradigm Publishing Services
Publication frequency: 2 issues per year

© 2025 Khin Thuzar Htay, Masrilayanti Masrilayanti, Jafril Tanjung, Monita Olivia, published by University of Žilina
This work is licensed under the Creative Commons Attribution 4.0 License.

AHEAD OF PRINT