References
- Aboutalebi Esfahani, M., & Namavar Jahromi, M. (2020a). Optimum parafibre length according to mechanical properties in hot mix asphalt. Road Materials and Pavement Design, 21(3), 683–700. https://doi.org/10.1080/14680629.2018.1527240
- Aboutalebi Esfahani, M., & Namavar Jahromi, M. (2020b). Optimum parafibre length according to mechanical properties in hot mix asphalt. Road Materials and Pavement Design, 21(3), 683–700. https://doi.org/10.1080/14680629.2018.1527240
- Afshin, A., & Behnood, A. (2025). Nanomaterials in asphalt pavements: A state-of-the-art review. In Cleaner Waste Systems (Vol. 10). Elsevier B.V. https://doi.org/10.1016/j.clwas.2025.100214
- Ahmed, A. A., & Ismael, M. Q. (2025). Effect of Waste Jute Fibers on the Mechanical Properties of Stone Matrix Asphalt Mixtures. Civil and Environmental Engineering. https://doi.org/10.2478/cee-2026-0004
- Albayati, A. H., & Al-Mosawe, H. (2023). Influence of Different Factors on Permanent Deformation of Hot Asphalt Concrete Mixtures. Civil and Environmental Engineering, 19(2), 555–567. https://doi.org/10.2478/cee-2023-0050
- Al-Bayati, N. K., & Ismael, M. Q. (2023). Effect of differently treated recycled concrete aggregates on Marshall properties and cost-benefit of asphalt mixtures. Sustainable Engineering and Innovation, 5(2), 127–140.
- Albayati, N., & Qadir-Ismael, M. (2024). Rutting performance of asphalt mixtures containing treated RCA and reinforced by carbon fibers. AiBi Revista de Investigación, Administración e Ingeniería, 12(1), 18–28.
- Aljbouri, H. J., & Albayati, A. H. (2023). Effect of nanomaterials on the durability of hot mix asphalt. Transportation Engineering, 11. https://doi.org/10.1016/j.treng.2023.100165
- Al-Saad, A. A., & Ismael, M. Q. (2022). Rutting prediction of hot mix asphalt mixtures reinforced by ceramic fibers. Journal of Applied Engineering Science, 20(4), 1345–1354.
- Ameri, M., Mohammadi, R., Vamegh, M., & Molayem, M. (2017). Evaluation the effects of nanoclay on permanent deformation behavior of stone mastic asphalt mixtures. Construction and Building Materials, 156, 107–113. https://doi.org/10.1016/j.conbuildmat.2017.07.055
- Ameri, M., Nobakht, S., Bemana, K., Vamegh, M., & Rooholamini, H. (2016). Effects of nanoclay on hot mix asphalt performance. Petroleum Science and Technology, 34(8), 747–753. https://doi.org/10.1080/10916466.2016.1164714
- Bastola, N. R., Vechione, M. M., Elshaer, M., & Souliman, M. I. (2021). Artificial neural network prediction model for in situ resilient modulus of subgrade soils for pavement design applications. Innovative Infrastructure Solutions, 7(1), 54. https://doi.org/10.1007/s41062-021-00659-x
- Cheraghian, G., Wistuba, M. P., Kiani, S., Behnood, A., Afrand, M., & Barron, A. R. (2022). Engineered nanocomposites in asphalt binders. Nanotechnology Reviews, 11(1), 1047–1067. https://doi.org/10.1515/ntrev-2022-0062
- Crucho, J. M. L., Neves, J. M. C. das, Capitão, S. D., & Picado-Santos, L. G. de. (2018). Mechanical performance of asphalt concrete modified with nanoparticles: Nanosilica, zero-valent iron and nanoclay. Construction and Building Materials, 181, 309–318. https://doi.org/10.1016/j.conbuildmat.2018.06.052
- Crucho, J. M. L., Neves, J. M. C. das, Capitão, S. D., & Picado-Santos, L. G. de. (2019). Evaluation of the durability of asphalt concrete modified with nanomaterials using the TEAGE aging method. Construction and Building Materials, 214, 178–186. https://doi.org/10.1016/j.conbuildmat.2019.04.121
- Dagli, C. H. (Ed.). (2007). Intelligent Engineering Systems Through Artificial Neural Networks, Volume 17. ASME Press. https://doi.org/10.1115/1.802655
- Dai, Y., Liang, W., Ye, D., Xie, S., Sang, Y., & Li, D. (2023). Modification effects of nanosilica on asphalt binders: A review. In Nanotechnology Reviews (Vol. 12, Issue 1). Walter de Gruyter GmbH. https://doi.org/10.1515/ntrev-2023-0138
- Esa, N. Y., Azahar, W. N. A. W., Kasim, N., & Basri, N. K. (2024). COMPARISON OF THE MECHANICAL PERFORMANCE OF DENSE GRADING AND POROUS GRADING MIXTURE UTILIZED WITH CRUMB RUBBER MODIFIED BINDER. IIUM Engineering Journal, 25(1), 128–141. https://doi.org/10.31436/iiumej.v25i1.2969
- Hassan, F. S., & Ismael, M. Q. (2024). Enhancement of the Rutting Resistance of Asphalt Mixtures Modified by Nano Clay and Crumb Rubber. Engineering, Technology and Applied Science Research, 14(5), 17438–17444. https://doi.org/10.48084/etasr.8531
- Hassan, F. S., & Ismael, M. Q. (2025). Marshall Properties and Rutting Resistance for Asphaltic Mixtures Modified by Nano-Montmorillonite. Journal of Engineering, 31(2), 19–33. https://doi.org/10.31026/j.eng.2025.02.02
- Huang, H., Wang, Y., Wu, X., Zhang, J., & Huang, X. (2024). Nanomaterials for Modified Asphalt and Their Effects on Viscosity Characteristics: A Comprehensive Review. In Nanomaterials (Vol. 14, Issue 18). Multidisciplinary Digital Publishing Institute (MDPI). https://doi.org/10.3390/nano14181503
- Hussain, W. A. M., Abdulrasool, A. T., & Kadhim, Y. N. (2022a). USING NANOCLAY HYDROPHILIC BENTONITE AS A FILLER TO ENHANCE THE MECHANICAL PROPERTIES OF ASPHALT. Journal of Applied Engineering Science, 20(1), 300–304. https://doi.org/10.5937/jaes0-35111
- Hussain, W. A. M., Abdulrasool, A. T., & Kadhim, Y. N. (2022b). USING NANOCLAY HYDROPHILIC BENTONITE AS A FILLER TO ENHANCE THE MECHANICAL PROPERTIES OF ASPHALT. Journal of Applied Engineering Science, 20(1), 300–304. https://doi.org/10.5937/jaes0-35111
- Iskender, E. (2016). Evaluation of mechanical properties of nano-clay modified asphalt mixtures. Measurement: Journal of the International Measurement Confederation, 93, 359–371. https://doi.org/10.1016/j.measurement.2016.07.045
- Ismael, S. A. D. M., & Ismael, M. Q. (2019). Moisture Susceptibility of Asphalt Concrete Pavement Modified by Nanoclay Additive. Civil Engineering Journal (Iran), 5(12), 2535–2553. https://doi.org/10.28991/cej-2019-03091431
- Jahromi, S. G., & Khodaii, A. (2009a). Effects of nanoclay on rheological properties of bitumen binder. Construction and Building Materials, 23(8), 2894–2904. https://doi.org/10.1016/j.conbuildmat.2009.02.027
- Jahromi, S. G., & Khodaii, A. (2009b). Effects of nanoclay on rheological properties of bitumen binder. Construction and Building Materials, 23(8), 2894–2904. https://doi.org/10.1016/j.conbuildmat.2009.02.027
- Jasim, S. A., & Ismael, M. Q. (2021). Marshall performance and volumetric properties of styrene-butadiene-styrene modified asphalt mixtures. Civil Engineering Journal, 7(6), 1050–1059.
- Li, R., Xiao, F., Amirkhanian, S., You, Z., & Huang, J. (2017). Developments of nano materials and technologies on asphalt materials – A review. In Construction and Building Materials (Vol. 143, pp. 633–648). Elsevier Ltd. https://doi.org/10.1016/j.conbuildmat.2017.03.158
- Moussa, G. S., Abdel-Raheem, A., & Abdel-Wahed, T. (2021). Effect of nanoclay particles on the performance of highdensity polyethylene-modified asphalt concrete mixture. Polymers, 13(3), 1–23. https://doi.org/10.3390/polym13030434
- Othman, K. (2022). Prediction of the hot asphalt mix properties using deep neural networks. Beni-Suef University Journal of Basic and Applied Sciences, 11(1). https://doi.org/10.1186/s43088-022-00221-3
- Taher, Z. K., & Ismael, M. Q. (2023). Rutting Prediction of Hot Mix Asphalt Mixtures Modified by Nano Silica and Subjected to Aging Process. Civil Engineering Journal (Iran), 9(Special Issue). https://doi.org/10.28991/CEJ-SP2023-09-01
- Yang, J., & Tighe, S. (2013). A Review of Advances of Nanotechnology in Asphalt Mixtures. Procedia - Social and Behavioral Sciences, 96, 1269–1276. https://doi.org/10.1016/j.sbspro.2013.08.144
- Yao, H., & You, Z. (2016). Nanoclay Modified Asphalt. In Innovative Developments of Advanced Multifunctional Nanocomposites in Civil and Structural Engineering (pp. 183–216). Elsevier Inc. https://doi.org/10.1016/B978-1-78242-326-3.00009-9
- You, Z., Mills-Beale, J., Foley, J. M., Roy, S., Odegard, G. M., Dai, Q., & Goh, S. W. (2011). Nanoclay-modified asphalt materials: Preparation and characterization. Construction and Building Materials, 25(2), 1072–1078. https://doi.org/10.1016/j.conbuildmat.2010.06.070
