References
- Hobbacher, A. (2008). The new IIW recommendations for fatigue assessment of welded joints and components – A comprehensive code recently updated. International Journal of Fatigue, 31(1), 50–58. https://doi.org/10.1016/j.ijfatigue.2008.04.002
- Hobbacher, A. F., & Baumgartner, J. (2024). Recommendations for fatigue design of welded joints and components. In IIW collection. https://doi.org/10.1007/978-3-031-57667-6
- Marquis, G., & Barsoum, Z. (2013). Fatigue strength improvement of steel structures by high-frequency mechanical impact: proposed procedures and quality assurance guidelines. Welding in the World, 58(1), 19–28. https://doi.org/10.1007/s40194-013-0077-8
- Al-Karawi, H., Von Bock Und Polach, R. U. F., & Al-Emrani, M. (2021). Fatigue life extension of existing welded structures via high frequency mechanical impact (HFMI) treatment. Engineering Structures, 239, 112234. https://doi.org/10.1016/j.engstruct.2021.112234
- Marquis, G. B., & Barsoum, Z. (2016). IIW recommendations for the HFMI treatment. In IIW collection. https://doi.org/10.1007/978-981-10-2504-4
- Campagnolo, A., Belluzzo, F., Yıldırım, H. C., & Meneghetti, G. (2021). Fatigue strength assessment of as-welded and HFMI treated welded joints according to structural and local approaches. International Journal of Fatigue, 155, 106584. https://doi.org/10.1016/j.ijfatigue.2021.106584
- Leitner, M., & Barsoum, Z. (2020). Effect of increased yield strength, R-ratio, and plate thickness on the fatigue resistance of high-frequency mechanical impact (HFMI)–treated steel joints. Welding in the World, 64(7), 1245–1259. https://doi.org/10.1007/s40194-020-00914-2
- Yıldırım, H. C., Leitner, M., Marquis, G. B., Stoschka, M., & Barsoum, Z. (2015). Application studies for fatigue strength improvement of welded structures by high-frequency mechanical impact (HFMI) treatment. Engineering Structures, 106, 422–435. https://doi.org/10.1016/j.engstruct.2015.10.044
- Marquis, G. B., Barsoum, Z., & Leitner, M. (2025). New developments and guideline updates for HFMI treatment for improving the fatigue strength of welded joints. Welding in the World. https://doi.org/10.1007/s40194-024-01882-7
- Kudryavtsev, Y., Kleiman, J., Lugovskoy, A., Lobanov, L., Knysh, V., Voitenko, O., & Prokopenko, G. (2007). Rehabilitation and repair of welded elements and structures by ultrasonic peening. Welding in the World, 51(7–8), 47–53. https://doi.org/10.1007/bf03266585
- Cheng, X. (2003). Residual stress modification by post-weld treatment and its beneficial effect on fatigue strength of welded structures. International Journal of Fatigue, 25(9–11), 1259–1269. https://doi.org/10.1016/j.ijfatigue.2003.08.020
- Pedersen, M. M., Mouritsen, O. Ø., Hansen, M. R., Andersen, J. G., & Wenderby, J. (2010). Comparison of Post-Weld treatment of High-Strength Steel welded joints in medium cycle fatigue. Welding in the World, 54(7–8), R208–R217. https://doi.org/10.1007/bf03263506
- Krasnowski, K. (2018). Possibilities of Increasing the Fatigue Strength of Welded Joints in Steel S700MC through High Frequency Impact Treatment (HiFIT). Biuletyn Instytutu Spawalnictwa, 2018(6), 7–15. https://doi.org/10.17729/ebis.2018.6/1
- Telljohann, G., & Dannemeyer, S. (2009). HiFIT – Technische Entwicklung und Anwendung. Stahlbau, 78(9), 622–626. https://doi.org/10.1002/stab.200910076
- Huo, L. (2004). Investigation of the fatigue behaviour of the welded joints treated by TIG dressing and ultrasonic peening under variable-amplitude load. International Journal of Fatigue, 27(1), 95–101. https://doi.org/10.1016/j.ijfatigue.2004.05.009
- Shams-Hakimi, P., Zamiri, F., Al-Emrani, M., & Barsoum, Z. (2017). Experimental study of transverse attachment joints with 40 and 60 mm thick main plates, improved by high-frequency mechanical impact treatment (HFMI). Engineering Structures, 155, 251–266. https://doi.org/10.1016/j.engstruct.2017.11.035
- Yildirim, H. C., & Marquis, G. B. (2012). Fatigue strength improvement factors for high strength steel welded joints treated by high frequency mechanical impact. International Journal of Fatigue, 44, 168–176. https://doi.org/10.1016/j.ijfatigue.2012.05.002
- Ummenhofer, T., Weidner, P., & Zinke, T. (2013). New and existing bridge constructions - Increase of fatigue strength of welded joints by high frequency mechanical impact treatment. Romanian Journal of Transport Infrastructure, 2(1), 88–101. https://doi.org/10.1515/rjti-2015-0013
- Yıldırım, H. C. (2016). Recent results on fatigue strength improvement of high-strength steel welded joints. International Journal of Fatigue, 101, 408–420. https://doi.org/10.1016/j.ijfatigue.2016.10.026
- Pijpers, R., Kolstein, M., Romeijn, A., & Bijlaard, F. (2009). FATIGUE EXPERIMENTS ON VERY HIGH STRENGTH STEEL BASE MATERIAL AND TRANSVERSE BUTT WELDS. In The Hong Kong Institute of Steel Construction eBooks (pp. 14–32). https://doi.org/10.18057/ijasc.2009.5.1.2
- Gerster, P., Schäfers, F., & Leitner, M. (2013). Pneumatic impact treatment (pit)–application and quality assurance. IIW Document XIII-WG2-138-13 pp, 1-11.
- Gunther, H. P., Kuhlmann, U., & Durr, A. (2005). Rehabilitation of welded joints by ultrasonic impact treatment (UIT). IABSE REPORTS, 90, 358.
