References
- Adeyanju, C. A., Ogunniyi, S., Ighalo, J. O., Adeniyi, A. G., & Abdulkareem, S. A. (2020). A review on Luffa fibres and their polymer composites. Journal of Materials Science, 56(4), 2797–2813. https://doi.org/10.1007/s10853-020-05432-6
- Afrin, H. (2017). A review of different types soil stabilization techniques. International Journal of Transportation Engineering and Technology, 3(2), 19–24. https://doi.org/10.11648/j.ijtet.20170302.12
- Al-Sumaiday, H., Khalaf, W.D., Muhauwiss, F.M. (2024). Experimental investigation of bearing capacity of circular and ring footings on geogrid-reinforced cohesionless soils. Civil and Environmental Engineering, Vol. 20, Issue 1, 349-363, DOI: 10.2478/cee-2024-0027.
- Barman, D., & Dash, S. K. (2022). Stabilization of expansive soils using chemical additives: A review. Journal of Rock Mechanics and Geotechnical Engineering, 14(4), 1319–1342. https://doi.org/10.1016/j.jrmge.2022.02.011
- Bhattacharyay, B. N. (2012). Estimating demand for infrastructure, 2010–2020. In Infrastructure for Asian connectivity (pp. 19–79). Edward Elgar Publishing.
- Bordoloi, S., Garg, A., & Sekharan, S. (2017). A review of physio-biochemical properties of natural fibers and their application in soil reinforcement. Advanced Civil Engineering Materials, 6(1), 323–359. https://doi.org/10.1520/ACEM20160076
- Conner, J. R., & Hoeffner, S. L. (1998). The history of stabilization/solidification technology. Critical Reviews in Environmental Science and Technology, 28(4), 325–396. https://doi.org/10.1080/10643389891254241
- Daniel-Mkpume, C., Ugochukwu, C., Okonkwo, C. E. G., Fayomi, O. S. I., & Obiorah, S. M. (2019). Effect of Luffa cylindrica fiber and particulate on the mechanical properties of epoxy. The International Journal of Advanced Manufacturing Technology, 102, 3439–3444. https://doi.org/10.1007/s00170-019-03422-w
- Fattah, M. Y., Al-Omari, R. R., & Ali, H. A. (2015). Numerical simulation of the treatment of soil swelling using grid geocell columns. Slovak Journal of Civil Engineering, 23(2), 9–18. https://doi.org/10.1515/sjce-2015-0007
- Ghali, L., Msahli, S., Zidi, M., & Sakli, F. (2009). Effect of pre-treatment of Luffa fibres on the structural properties. Materials Letters, 63(1), 61–63.
- Guo, Y., Wang, L., Chen, Y., Luo, P., & Chen, T. (2019). Properties of luffa fiber reinforced PHBV biodegradable composites. Polymers, 11(11), 1765. https://doi.org/10.3390/polym11111765
- Jino, R., Pugazhenthi, R., Ashok, K.G., Ilango, T., & Chakravarthy, P.R.K. (2017). Enhancement of Mechanical Properties of Luffa Fiber/Epoxy Composite Using B4C. J. Adv. Microsc. Res. 12, 89–91.
- Kamran, M. J., Jayamani, E., Heng, S. K., Wong, Y. C., Rahman, M. R., Al-Bogami, A. S., Huda, D., Bin Bakri, M. K., & Rahman, M. M. (2022). Characterization and comparative study on chemically treated luffa fiber as reinforcement for polylactic acid bio-composites. BioResources, 17(2), 2576–2597. https://doi.org/10.15376/biores.17.2.2576-2597
- Lau, K. T., Hung, P. Y., & Zhu, M. H. (2018). Properties of natural fibre composites for structural engineering applications. Composites Part B: Engineering, 136, 222–233. https://doi.org/10.1016/j.compositesb.2017.10.038
- Nayem, N. H. (2023). Enhancement of soil characteristics using different stabilization techniques. Journal of Civil Construction and Environmental Engineering, 8(4), 71–79. https://doi.org/10.11648/j.jccee.20230804.12
- Nguyen, G., Masarovičová, S., Gago, F., Grzybowska-Pietras, J. (2024). Application of Direct Shear Test to Analysis of the Rate of Soil Improvement with Polyester Fibres. Appl. Sci. 2024, 14, 4601. https://doi.org/10.3390/app14114601
- Prokofyeva, I. (2024). From idea to implementation: Opening a family farm for luffa (Luffa cylindrica) cultivation in the territory of the Republic of Croatia [Master’s thesis, LAB University of Applied Sciences]. URN: https://urn.fi/URN:NBN:fi:amk-2024112529829
- Safi, W., & Singh, S. (2022). Efficient & effective improvement and stabilization of clay soil with waste materials. Materials Today: Proceedings, 51, 947–955.
- Wibawa, I. M. S., & Maharani, S. E. (2024). Improvement of clay soils using cement as a road pavement sub grade (Case study: Kuta–Tanah Lot road). Civil and Environmental Engineering, Vol. 20, Issue 1, 124-136, DOI: 10.2478/cee-2024-0011
- Association Française de Normalisation. (2022). Geotechnical testing – Laboratory tests on soils – Part 12: Determination of liquid limit and plasticity – Amendments 1 and 2 (NF EN ISO 17892-12). AFNOR.
- Association Française de Normalisation. (2014). NF P94-093-10: Sols — Reconnaissance et essais — Détermination des références de compactage d’un matériau — Essai Proctor normal — Essai Proctor modifié. AFNOR.
- Association Française de Normalisation. (1995). XP P94-091 : Sols — Reconnaissance et essais — Essai de gonflement à l’oedomètre — Détermination des déformations par chargement de plusieurs éprouvettes. AFNOR.
- Association Française de Normalisation. (2022). NF EN 17542-3 : Terrassements — Essais géotechniques en laboratoire — Partie 3 : Valeur de bleu de méthylène VBS d’un sol ou d’une roche. AFNOR.
- Association Française de Normalisation. (2022). NF ISO 10390 : Qualité du sol — Détermination du pH. AFNOR.
- Association Française de Normalisation. (2022). FD P18-011 : Béton — Définition et classification des environnements chimiquement agressifs — Recommandations pour la formulation des bétons. AFNOR.
- Association Française de Normalisation. (2018). EN ISO 17892-10 : Reconnaissance et essais géotechniques — Essais de laboratoire des sols — Partie 10 : Essai de cisaillement direct. AFNOR.
