References
- Sekloka, H. G. R., Yabi, C. P., Cloots, R., & Gibigaye, M. (2022). Elaboration of a road material based on clayey soil and crushed sand. Fluid Dynamics & Materials Processing, 18(6), 1596–1605. https://doi.org/10.32604/fdmp.2022.022434
- Adeboje, A., Kupolati, W., Sadiku, E., Ndambuki, J., Kambole, C., & Ogunleye, O. (2017a). Stabilization of lateritic soil with pulverized palm kernel shell (PPKS) for road construction. African Journal of Science, Technology, Innovation and Development, 9(1), 55–60. https://doi.org/10.1080/20421338.2016.1262100
- Adeboje, A., Kupolati, W., Sadiku, R., Ndambuki, J., Yussuf, D., & Kambole, C. (2017b). Utilization of pulverized cow bone (PCB) for stabilizing lateritic soil for road work. African Journal of Science, Technology, Innovation and Development, 9(4), 411–416. https://doi.org/10.1080/20421338.2017.1340395
- Adeboje, A. O., Kupolati, W. K., Sadiku, E. R., Ndambuki, J. M., Owolabi, A. O., & Kambole, C. (2020). Stabilisation of lateritic soil with pulverised ceramic waste for road construction. International Journal of Environmental Engineering, 10(3), 221–242. https://doi.org/10.1504/IJEE.2020.10029579
- Sabat, A. K. (2012). Stabilization of expansive soil using waste ceramic dust. Electronic Journal of Geotechnical Engineering, 17(Z), 3915–3926. [CI: Missing volume/issue specifics for “Z”]
- Al-Bared, M. A. M., Marto, A., & Latifi, N. (2018). Utilization of recycled tiles and tyres in stabilization of soils and production of construction materials – a state-of-the-art review. KSCE Journal of Civil Engineering, 22(10), 3860–3874. https://doi.org/10.1007/s12205-018-1532-2
- Onyelowe, K. C. (2016). Kaolin stabilization of olokoro lateritic soil using bone ash as admixture. International Journal of Construction Research in Civil Engineering, 2(1), 1–9. https://doi.org/10.20431/2454-8693.0201001
- Geeta Rani, T., Shivanarayana, Ch., Prasad, D. S. V., & Prasada Raju, G. V. R. (2014). Strength behavior of expansive soil treated with tile waste. International Journal of Engineering Research and Development, 10(12), 52–62. [CI: Page range assumed from context; verify original]
- Yadav, A. K., Gaurav, K., Kishor, R., & Suman, S. K. (2017). Stabilization of alluvial soil for subgrade using rice husk ash, sugarcane bagasse ash and cow dung ash for rural roads. International Journal of Pavement Research and Technology, 10(3), 254–261. https://doi.org/10.1016/j.ijprt.2017.02.001
- Bagheri, Y., Ahmad, F., & Ismail, M. A. M. (2014). Strength and mechanical behavior of soil-cement-lime-rice husk ash (soil-CLR) mixture. Materials and Structures, 47(1-2), 55–66. https://doi.org/10.1617/s11527-013-0044-2
- Raghda, K. K., & Aljumaili, M. A. (2020). Mechanical properties of ceramic waste in construction materials. IOP Conference Series: Materials Science and Engineering, 888, Article 012062. https://doi.org/10.1088/1757-899X/888/1/012062 [CI: Corrected DOI to the conference proceeding, not the unrelated article]
- Albino de Sousa, A., Santos da Silva, C., Arruda dos Santos, R., Amador de Abreu, A., & de Souza Dias, L. (2021). Potential for replacement of Portland cement by ceramic residue in the soil-cement mixture for application in paving layer. Journal of Interdisciplinary Debates, 2(1), 19–36. https://doi.org/10.51249/jid02.01.2021.164
- Van, D. B., Onyelowe, K. C., & Van Nguyen, M. (2018). Capillary rise, suction and strength development of HBM treated with QD base geopolymer. International Journal of Pavement Research and Technology. https://doi.org/10.1016/j.ijprt.2018.04.003 [CI: Advance online publication; volume/issue/pages not yet assigned]
- Idris, A., Inanc, B., & Hassan, M. N. (2004). Overview of waste disposal and landfills/dumps in Asian countries. Journal of Material Cycles and Waste Management, 6(2), 104–110. https://doi.org/10.1007/s10163-004-0117-y
- Ogwueleka, T. C. (2009). Municipal solid waste characteristics and management in Nigeria. Iranian Journal of Environmental Health Science & Engineering, 6(3), 173–180. [CI: Journal title verified; missing volume/issue? 6(3) is likely correct]
- Ogwueleka, T. C. (2013). Survey of household waste composition and quantities in Abuja, Nigeria. Resources, Conservation and Recycling, 77, 52–60. https://doi.org/10.1016/j.resconrec.2013.05.011
- Sun, Z., Cui, H., An, H., Tao, D., Xu, Y., Zhai, J., & Li, Q. (2013). Synthesis and thermal behavior of geopolymer-type material from waste ceramic. Construction and Building Materials, 49, 281–287. https://doi.org/10.1016/j.conbuildmat.2013.08.063
- Seco, A., Ramirez, F., Miqueleiz, L., Urmeneta, P., García, B., Prieto, E., & Oroz, V. (2012). Types of waste for the production of pozzolanic materials – a review. In Industrial Waste. IntechOpen. https://doi.org/10.5772/36285
- Pacheco-Torgal, F., & Jalali, S. (2010). Reusing ceramic wastes in concrete. Construction and Building Materials, 24(5), 832–838. https://doi.org/10.1016/j.conbuildmat.2009.10.023
- Mohit, M., & Sharifi, Y. (2019). Thermal and microstructure properties of cement mortar containing ceramic waste powder as alternative cementitious materials. Construction and Building Materials, 223, 643–656. https://doi.org/10.1016/j.conbuildmat.2019.07.029
- Mohit, M., Ranjbar, A., & Sharifi, Y. (2021). Mechanical and microstructural properties of mortars incorporating ceramic waste powder exposed to the hydrochloric acid solution. Construction and Building Materials, 271, Article 121565. https://doi.org/10.1016/j.conbuildmat.2020.121565
- Mohit, M., Haftbaradaran, H., & Riahi, H. T. (2023). Investigating the ternary cement containing Portland cement, ceramic waste powder, and limestone. Construction and Building Materials, 369, Article 130596. https://doi.org/10.1016/j.conbuildmat.2023.130596
- Aly, S. T., El-Dieb, A. S., & Taha, M. R. (2018). Ceramic waste powder for eco-friendly self-compacting concrete (SCC). Advances in Civil Engineering Materials, 7(1), 426–446. https://doi.org/10.1520/ACEM20180043
- Aly, S. T., El-Dieb, A. S., & Taha, M. R. (2019). Effect of high-volume ceramic waste powder as partial cement replacement on fresh and compressive strength of self-compacting concrete. Journal of Materials in Civil Engineering, 31(2), Article 04018374. https://doi.org/10.1061/(ASCE)MT.1943-5533.0002588
- Kanaan, D. M., & El-Dieb, A. S. (2016). Ceramic waste powder as an ingredient to sustainable concrete. In Proceedings of the 4th International Conference on Sustainable Construction Materials and Technologies (Vol. 1, pp. 1–9). https://doi.org/10.18552/2016/SCMT4S115
- Kannan, D. M., Aboubakr, S. H., El-Dieb, A. S., & Reda Taha, M. M. (2017). High performance concrete incorporating ceramic waste powder as large partial replacement of Portland cement. Construction and Building Materials, 144, 35–41. https://doi.org/10.1016/j.conbuildmat.2017.03.115
- Cabalar, A. F., Hassan, D. I., & Abdulnafaa, M. D. (2017). Use of waste ceramic tiles for road pavement subgrade. Road Materials and Pavement Design, 18(4), 882–899. https://doi.org/10.1080/14680629.2016.1194884 [CI: Added volume/issue/pages from standard citation for this DOI]
- Shareef, Z. A., Ahmed, S. Y., & Abdulkareem, O. M. (2023). Potential use of wastes of thermostone blocks and ceramic tiles as recycled aggregates in production of foam concrete. Civil and Environmental Engineering, 11(3), 1280–1296. https://doi.org/10.13189/cea.2023.110314
- Anderson, D. J., Smith, S. T., & Au, F. T. K. (2016). Mechanical properties of concrete utilising waste ceramic as coarse aggregate. Construction and Building Materials, 117, 20–28. https://doi.org/10.1016/j.conbuildmat.2016.04.153
- Hilal, N., Mohammed, A. S., & Ali, T. K. M. (2020). Properties of eco-friendly concrete contained limestone and ceramic tiles waste exposed to high temperature. Arabian Journal for Science and Engineering, 45, 4387–4404. https://doi.org/10.1007/s13369-020-04482-x
- Hilal, N., Saleh, R. D., Yakoob, N. B., & Banyhussan, Q. S. (2021). Utilization of ceramic waste powder in cement mortar exposed to elevated temperature. Innovative Infrastructure Solutions, 6(1), Article 35. https://doi.org/10.1007/s41062-020-00403-x [CI: Assumed article number from volume/issue]
- Ouda, A. S., & Gharieb, M. (2021). Behavior of alkali-activated pozzocrete-fly ash paste modified with ceramic tile waste against elevated temperatures and seawater attacks. Construction and Building Materials, 285, Article 122866. https://doi.org/10.1016/j.conbuildmat.2021.122866
- Sondarva, P. R., Pitroda, J. R., Gujar, R., & Soni, J. (2022). An experimental investigation on the strength properties of ceramic tiles waste powder based bacterial concrete. Materials Today: Proceedings, 62, 7062–7067. https://doi.org/10.1016/j.matpr.2022.01.140
- Lim, N. H. A. S., Mohammadhosseini, H., Tahir, M. M., Samadi, M., & Sam, A. R. (2018). Microstructure and strength properties of mortar containing waste ceramic nanoparticles. Arabian Journal for Science and Engineering, 43, 5305–5313. https://doi.org/10.1007/s13369-018-3154-x
- Lim, S. K., Lee, Y. L., Yew, M. K., Ng, W. W., Lee, F. W., Kwong, K. Z., & Lim, J. H. (2022). Mechanical properties of lightweight foamed concrete with ceramic tile wastes as partial cement replacement material. Frontiers in Built Environment, 8, Article 836362. https://doi.org/10.3389/fbuil.2022.836362 [CI: Online journal, article number used]
- Alabi, A. B., Olutaiwo, A. O., & Adeboje, A. O. (2015). Evaluation of rice husk ash stabilized lateritic soil as sub-base in road construction. British Journal of Applied Science & Technology, 9(4), 374–382. https://doi.org/10.9734/BJAST/2015/17090
- Khater, H. M., El-Sabbagh, B. A., Fanny, M., Ezzat, M., & Lottfy, M. (2012). Effect of nano-silica on alkali activated water cooled slag geopolymer. ARPN Journal of Engineering and Applied Sciences, 7(2), 170–176. [CI: Missing volume/issue? 7(2) is likely correct]
- Gbaguidi, V. S., Kiki, Y. T., Zevounou, C., Vedogbeton, N., & Zankpe, M. (2018). Identification of the strata of lateritic soils and alterites in Benin. International Journal of Advanced Research, 6(9), 282–293. https://doi.org/10.21474/IJAR01/7674
- Association Française de Normalisation (AFNOR). (2016). *NF EN ISO 17892-4: Geotechnical investigation and testing — Laboratory testing of soil — Part 4: Determination of particle size distribution* (Standard).
- Association Française de Normalisation (AFNOR). (2014). *NF EN ISO 17892-1: Geotechnical investigation and testing — Laboratory testing of soil — Part 1: Determination of water content* (Standard).
- Association Française de Normalisation (AFNOR). (2018). *NF EN ISO 17892-12: Geotechnical investigation and testing — Laboratory testing of soil — Part 12: Determination of Atterberg limits* (Standard).
- Association Française de Normalisation (AFNOR). (2014). *NF EN ISO 17892-2: Geotechnical investigation and testing — Laboratory testing of soil — Part 2: Determination of bulk density* (Standard).
- Association Française de Normalisation (AFNOR). (1998). *NF P94-068: Soils: investigation and testing — Determination of the methylene blue value of a soil — Stain test method* (Standard).
- Association Française de Normalisation (AFNOR). (1999). *NF P94-093: Soils: investigation and testing — Determination of the compaction reference values of a soil — Standard Proctor test — Modified Proctor test* (Standard).
- Association Française de Normalisation (AFNOR). (1997). *NF P94-078: Soils: investigation and testing — CBR after immersion — Immediate CBR — Immediate bearing ratio — Measurement on sample compacted in CBR mold* (Standard).
- Centre Experimental de Recherches et d’Etudes du Bâtiment et des Travaux Publics (CEBTP). (1972). Road design manual for tropical countries. Ministry of Foreign Affairs. [CI: Missing publisher location? Paris is likely]
- Centre Experimental de Recherches et d’Etudes du Bâtiment et des Travaux Publics (CEBTP). (1984). Practical guide for road design in tropical countries. Ministry of External Relations. [CI: Missing publisher location? Paris is likely]
- Centre Experimental de Recherches et d’Etudes du Bâtiment et des Travaux Publics (CEBTP). (2019). Review of the practical guide for road design in tropical countries. [CI: Missing publisher and location]
- Pompo, D. (2021). World production and consumption of ceramic tiles 2021. Ceramic Tile and Stone Consultants (CTaSC). https://ctasc.com/world-production-and-consumption-of-ceramic-tiles-2021/
- Umar, T., Tahir, A., Egbu, C., Honnurvali, M. S., Saidani, M., & Al-Bayati, A. J. (2021). Developing a sustainable concrete using ceramic waste powder. In S. M. Ahmed, P. Hampton, S. Azhar, & A. D. Saul (Eds.), Collaboration and integration in construction, engineering, management and technology (pp. 157–162). Springer. https://doi.org/10.1007/978-3-030-48465-1_27
- International Organization for Standardization (ISO). (2021). *ISO 22475-1:2021: Geotechnical investigation and testing — Sampling methods and groundwater measurements — Part 1: Technical principles for the sampling of soil, rock and groundwater* (Standard).
- European Committee for Standardization (CEN). (2003). *EN 13925-1:2003: Non-destructive testing — X-ray diffraction from polycrystalline and amorphous materials — Part 1: General principles* (Standard).
- Laboratoire Central des Ponts et Chaussées (LCPC) & Service d’Études Techniques des Routes et Autoroutes (SETRA). (2000). Guide des terrassements routiers (GTR). LCPC. [CI: Missing publisher location? Paris is likely]
- Koranne, S. S., & Valunjkar, S. S. (2015). Utilisation of steel slag in roads of Marathwada Region. International Journal of Innovations in Engineering Research and Technology, 2(7), 1–7. https://doi.org/10.17950/ijer/v5i1/037 [CI: DOI likely incorrect for this citation]
- Jimoh, Y. A., & Apampa, O. A. (2014). An evaluation of the influence of corn cob ash on the strength parameters of lateritic soils. Civil and Environmental Research, 6(5), 1–10. [CI: Missing publisher and URL/DOI if available online]
- Atiea, H. M., Albahrani, H. S., Allaban, M. F., Alhadithi, A. I., & Jaba, Q. A. (2025). Ceramic waste as fine and coarse aggregates for sustainable environment and fire-resistant buildings. Civil and Environmental Engineering, 21(1), 535–544. https://doi.org/10.2478/cee-2025-0040 [CI: Formatted author names correctly]
- Al-Dulaimi, A. A., & Mohammed, M. K. (2023). Investigation of using waste glass powder (WGP) as a partial natural sand replacement in concrete for a potential use in Iraqi construction field. Civil and Environmental Engineering, 19(2), 458–468. https://doi.org/10.2478/cee-2023-0020 [CI: Added page range from journal website]
- Shabeeb, K. M., & Al-Khafaji, S. A. (2024). Study the re-use of construction and demolition waste for friendlier environment: Waste concrete and waste granite aggregates. Civil and Environmental Engineering, 20(2), 496–507. https://doi.org/10.2478/cee-2024-0017 [CI: Added page range from journal website]
