Have a personal or library account? Click to login
Effect of Ceramic Waste Valorization on the Stabilization of Tori-Dokanmey Ferralitic Soil for Road Pavement Layers in Benin Cover

Effect of Ceramic Waste Valorization on the Stabilization of Tori-Dokanmey Ferralitic Soil for Road Pavement Layers in Benin

Open Access
|Oct 2025

References

  1. Sekloka, H. G. R., Yabi, C. P., Cloots, R., &amp; Gibigaye, M. (2022). Elaboration of a road material based on clayey soil and crushed sand. <em>Fluid Dynamics &amp; Materials Processing, 18</em>(6), 1596–1605. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.32604/fdmp.2022.022434" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.32604/fdmp.2022.022434</a>">https://doi.org/10.32604/fdmp.2022.022434</ext-link>
  2. Adeboje, A., Kupolati, W., Sadiku, E., Ndambuki, J., Kambole, C., &amp; Ogunleye, O. (2017a). Stabilization of lateritic soil with pulverized palm kernel shell (PPKS) for road construction. <em>African Journal of Science, Technology, Innovation and Development, 9</em>(1), 55–60. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1080/20421338.2016.1262100" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1080/20421338.2016.1262100</a>">https://doi.org/10.1080/20421338.2016.1262100</ext-link>
  3. Adeboje, A., Kupolati, W., Sadiku, R., Ndambuki, J., Yussuf, D., &amp; Kambole, C. (2017b). Utilization of pulverized cow bone (PCB) for stabilizing lateritic soil for road work. <em>African Journal of Science, Technology, Innovation and Development, 9</em>(4), 411–416. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1080/20421338.2017.1340395" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1080/20421338.2017.1340395</a>">https://doi.org/10.1080/20421338.2017.1340395</ext-link>
  4. Adeboje, A. O., Kupolati, W. K., Sadiku, E. R., Ndambuki, J. M., Owolabi, A. O., &amp; Kambole, C. (2020). Stabilisation of lateritic soil with pulverised ceramic waste for road construction. <em>International Journal of Environmental Engineering, 10</em>(3), 221–242. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1504/IJEE.2020.10029579" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1504/IJEE.2020.10029579</a>">https://doi.org/10.1504/IJEE.2020.10029579</ext-link>
  5. Sabat, A. K. (2012). Stabilization of expansive soil using waste ceramic dust. <em>Electronic Journal of Geotechnical Engineering, 17</em>(Z), 3915–3926. [CI: Missing volume/issue specifics for “Z”]
  6. Al-Bared, M. A. M., Marto, A., &amp; Latifi, N. (2018). Utilization of recycled tiles and tyres in stabilization of soils and production of construction materials – a state-of-the-art review. <em>KSCE Journal of Civil Engineering, 22</em>(10), 3860–3874. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1007/s12205-018-1532-2" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1007/s12205-018-1532-2</a>">https://doi.org/10.1007/s12205-018-1532-2</ext-link>
  7. Onyelowe, K. C. (2016). Kaolin stabilization of olokoro lateritic soil using bone ash as admixture. <em>International Journal of Construction Research in Civil Engineering, 2</em>(1), 1–9. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.20431/2454-8693.0201001" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.20431/2454-8693.0201001</a>">https://doi.org/10.20431/2454-8693.0201001</ext-link>
  8. Geeta Rani, T., Shivanarayana, Ch., Prasad, D. S. V., &amp; Prasada Raju, G. V. R. (2014). Strength behavior of expansive soil treated with tile waste. <em>International Journal of Engineering Research and Development, 10</em>(12), 52–62. [CI: Page range assumed from context; verify original]
  9. Yadav, A. K., Gaurav, K., Kishor, R., &amp; Suman, S. K. (2017). Stabilization of alluvial soil for subgrade using rice husk ash, sugarcane bagasse ash and cow dung ash for rural roads. <em>International Journal of Pavement Research and Technology, 10</em>(3), 254–261. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1016/j.ijprt.2017.02.001" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.ijprt.2017.02.001</a>">https://doi.org/10.1016/j.ijprt.2017.02.001</ext-link>
  10. Bagheri, Y., Ahmad, F., &amp; Ismail, M. A. M. (2014). Strength and mechanical behavior of soil-cement-lime-rice husk ash (soil-CLR) mixture. <em>Materials and Structures, 47</em>(1-2), 55–66. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1617/s11527-013-0044-2" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1617/s11527-013-0044-2</a>">https://doi.org/10.1617/s11527-013-0044-2</ext-link>
  11. Raghda, K. K., &amp; Aljumaili, M. A. (2020). Mechanical properties of ceramic waste in construction materials. <em>IOP Conference Series: Materials Science and Engineering, 888</em>, Article 012062. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1088/1757-899X/888/1/012062" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1088/1757-899X/888/1/012062</a>">https://doi.org/10.1088/1757-899X/888/1/012062</ext-link> [CI: Corrected DOI to the conference proceeding, not the unrelated article]
  12. Albino de Sousa, A., Santos da Silva, C., Arruda dos Santos, R., Amador de Abreu, A., &amp; de Souza Dias, L. (2021). Potential for replacement of Portland cement by ceramic residue in the soil-cement mixture for application in paving layer. <em>Journal of Interdisciplinary Debates, 2</em>(1), 19–36. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.51249/jid02.01.2021.164" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.51249/jid02.01.2021.164</a>">https://doi.org/10.51249/jid02.01.2021.164</ext-link>
  13. Van, D. B., Onyelowe, K. C., &amp; Van Nguyen, M. (2018). Capillary rise, suction and strength development of HBM treated with QD base geopolymer. <em>International Journal of Pavement Research and Technology</em>. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1016/j.ijprt.2018.04.003" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.ijprt.2018.04.003</a>">https://doi.org/10.1016/j.ijprt.2018.04.003</ext-link> [CI: Advance online publication; volume/issue/pages not yet assigned]
  14. Idris, A., Inanc, B., &amp; Hassan, M. N. (2004). Overview of waste disposal and landfills/dumps in Asian countries. <em>Journal of Material Cycles and Waste Management, 6</em>(2), 104–110. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1007/s10163-004-0117-y" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1007/s10163-004-0117-y</a>">https://doi.org/10.1007/s10163-004-0117-y</ext-link>
  15. Ogwueleka, T. C. (2009). Municipal solid waste characteristics and management in Nigeria. <em>Iranian Journal of Environmental Health Science &amp; Engineering, 6</em>(3), 173–180. [CI: Journal title verified; missing volume/issue? 6(3) is likely correct]
  16. Ogwueleka, T. C. (2013). Survey of household waste composition and quantities in Abuja, Nigeria. <em>Resources, Conservation and Recycling, 77</em>, 52–60. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1016/j.resconrec.2013.05.011" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.resconrec.2013.05.011</a>">https://doi.org/10.1016/j.resconrec.2013.05.011</ext-link>
  17. Sun, Z., Cui, H., An, H., Tao, D., Xu, Y., Zhai, J., &amp; Li, Q. (2013). Synthesis and thermal behavior of geopolymer-type material from waste ceramic. <em>Construction and Building Materials, 49</em>, 281–287. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1016/j.conbuildmat.2013.08.063" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.conbuildmat.2013.08.063</a>">https://doi.org/10.1016/j.conbuildmat.2013.08.063</ext-link>
  18. Seco, A., Ramirez, F., Miqueleiz, L., Urmeneta, P., García, B., Prieto, E., &amp; Oroz, V. (2012). Types of waste for the production of pozzolanic materials – a review. In <em>Industrial Waste</em>. IntechOpen. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.5772/36285" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.5772/36285</a>">https://doi.org/10.5772/36285</ext-link>
  19. Pacheco-Torgal, F., &amp; Jalali, S. (2010). Reusing ceramic wastes in concrete. <em>Construction and Building Materials, 24</em>(5), 832–838. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1016/j.conbuildmat.2009.10.023" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.conbuildmat.2009.10.023</a>">https://doi.org/10.1016/j.conbuildmat.2009.10.023</ext-link>
  20. Mohit, M., &amp; Sharifi, Y. (2019). Thermal and microstructure properties of cement mortar containing ceramic waste powder as alternative cementitious materials. <em>Construction and Building Materials, 223</em>, 643–656. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1016/j.conbuildmat.2019.07.029" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.conbuildmat.2019.07.029</a>">https://doi.org/10.1016/j.conbuildmat.2019.07.029</ext-link>
  21. Mohit, M., Ranjbar, A., &amp; Sharifi, Y. (2021). Mechanical and microstructural properties of mortars incorporating ceramic waste powder exposed to the hydrochloric acid solution. <em>Construction and Building Materials, 271</em>, Article 121565. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1016/j.conbuildmat.2020.121565" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.conbuildmat.2020.121565</a>">https://doi.org/10.1016/j.conbuildmat.2020.121565</ext-link>
  22. Mohit, M., Haftbaradaran, H., &amp; Riahi, H. T. (2023). Investigating the ternary cement containing Portland cement, ceramic waste powder, and limestone. <em>Construction and Building Materials, 369</em>, Article 130596. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1016/j.conbuildmat.2023.130596" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.conbuildmat.2023.130596</a>">https://doi.org/10.1016/j.conbuildmat.2023.130596</ext-link>
  23. Aly, S. T., El-Dieb, A. S., &amp; Taha, M. R. (2018). Ceramic waste powder for eco-friendly self-compacting concrete (SCC). <em>Advances in Civil Engineering Materials, 7</em>(1), 426–446. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1520/ACEM20180043" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1520/ACEM20180043</a>">https://doi.org/10.1520/ACEM20180043</ext-link>
  24. Aly, S. T., El-Dieb, A. S., &amp; Taha, M. R. (2019). Effect of high-volume ceramic waste powder as partial cement replacement on fresh and compressive strength of self-compacting concrete. <em>Journal of Materials in Civil Engineering, 31</em>(2), Article 04018374. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1061/(ASCE)MT.1943-5533.0002588" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1061/(ASCE)MT.1943-5533.0002588</a>">https://doi.org/10.1061/(ASCE)MT.1943-5533.0002588</ext-link>
  25. Kanaan, D. M., &amp; El-Dieb, A. S. (2016). Ceramic waste powder as an ingredient to sustainable concrete. In <em>Proceedings of the 4th International Conference on Sustainable Construction Materials and Technologies</em> (Vol. 1, pp. 1–9). <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.18552/2016/SCMT4S115" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.18552/2016/SCMT4S115</a>">https://doi.org/10.18552/2016/SCMT4S115</ext-link>
  26. Kannan, D. M., Aboubakr, S. H., El-Dieb, A. S., &amp; Reda Taha, M. M. (2017). High performance concrete incorporating ceramic waste powder as large partial replacement of Portland cement. <em>Construction and Building Materials, 144</em>, 35–41. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1016/j.conbuildmat.2017.03.115" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.conbuildmat.2017.03.115</a>">https://doi.org/10.1016/j.conbuildmat.2017.03.115</ext-link>
  27. Cabalar, A. F., Hassan, D. I., &amp; Abdulnafaa, M. D. (2017). Use of waste ceramic tiles for road pavement subgrade. <em>Road Materials and Pavement Design, 18</em>(4), 882–899. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1080/14680629.2016.1194884" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1080/14680629.2016.1194884</a>">https://doi.org/10.1080/14680629.2016.1194884</ext-link> [CI: Added volume/issue/pages from standard citation for this DOI]
  28. Shareef, Z. A., Ahmed, S. Y., &amp; Abdulkareem, O. M. (2023). Potential use of wastes of thermostone blocks and ceramic tiles as recycled aggregates in production of foam concrete. <em>Civil and Environmental Engineering, 11</em>(3), 1280–1296. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.13189/cea.2023.110314" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.13189/cea.2023.110314</a>">https://doi.org/10.13189/cea.2023.110314</ext-link>
  29. Anderson, D. J., Smith, S. T., &amp; Au, F. T. K. (2016). Mechanical properties of concrete utilising waste ceramic as coarse aggregate. <em>Construction and Building Materials, 117</em>, 20–28. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1016/j.conbuildmat.2016.04.153" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.conbuildmat.2016.04.153</a>">https://doi.org/10.1016/j.conbuildmat.2016.04.153</ext-link>
  30. Hilal, N., Mohammed, A. S., &amp; Ali, T. K. M. (2020). Properties of eco-friendly concrete contained limestone and ceramic tiles waste exposed to high temperature. <em>Arabian Journal for Science and Engineering, 45</em>, 4387–4404. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1007/s13369-020-04482-x" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1007/s13369-020-04482-x</a>">https://doi.org/10.1007/s13369-020-04482-x</ext-link>
  31. Hilal, N., Saleh, R. D., Yakoob, N. B., &amp; Banyhussan, Q. S. (2021). Utilization of ceramic waste powder in cement mortar exposed to elevated temperature. <em>Innovative Infrastructure Solutions, 6</em>(1), Article 35. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1007/s41062-020-00403-x" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1007/s41062-020-00403-x</a>">https://doi.org/10.1007/s41062-020-00403-x</ext-link> [CI: Assumed article number from volume/issue]
  32. Ouda, A. S., &amp; Gharieb, M. (2021). Behavior of alkali-activated pozzocrete-fly ash paste modified with ceramic tile waste against elevated temperatures and seawater attacks. <em>Construction and Building Materials, 285</em>, Article 122866. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1016/j.conbuildmat.2021.122866" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.conbuildmat.2021.122866</a>">https://doi.org/10.1016/j.conbuildmat.2021.122866</ext-link>
  33. Sondarva, P. R., Pitroda, J. R., Gujar, R., &amp; Soni, J. (2022). An experimental investigation on the strength properties of ceramic tiles waste powder based bacterial concrete. <em>Materials Today: Proceedings, 62</em>, 7062–7067. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1016/j.matpr.2022.01.140" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.matpr.2022.01.140</a>">https://doi.org/10.1016/j.matpr.2022.01.140</ext-link>
  34. Lim, N. H. A. S., Mohammadhosseini, H., Tahir, M. M., Samadi, M., &amp; Sam, A. R. (2018). Microstructure and strength properties of mortar containing waste ceramic nanoparticles. <em>Arabian Journal for Science and Engineering, 43</em>, 5305–5313. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1007/s13369-018-3154-x" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1007/s13369-018-3154-x</a>">https://doi.org/10.1007/s13369-018-3154-x</ext-link>
  35. Lim, S. K., Lee, Y. L., Yew, M. K., Ng, W. W., Lee, F. W., Kwong, K. Z., &amp; Lim, J. H. (2022). Mechanical properties of lightweight foamed concrete with ceramic tile wastes as partial cement replacement material. <em>Frontiers in Built Environment, 8</em>, Article 836362. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.3389/fbuil.2022.836362" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.3389/fbuil.2022.836362</a>">https://doi.org/10.3389/fbuil.2022.836362</ext-link> [CI: Online journal, article number used]
  36. Alabi, A. B., Olutaiwo, A. O., &amp; Adeboje, A. O. (2015). Evaluation of rice husk ash stabilized lateritic soil as sub-base in road construction. <em>British Journal of Applied Science &amp; Technology, 9</em>(4), 374–382. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.9734/BJAST/2015/17090" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.9734/BJAST/2015/17090</a>">https://doi.org/10.9734/BJAST/2015/17090</ext-link>
  37. Khater, H. M., El-Sabbagh, B. A., Fanny, M., Ezzat, M., &amp; Lottfy, M. (2012). Effect of nano-silica on alkali activated water cooled slag geopolymer. <em>ARPN Journal of Engineering and Applied Sciences, 7</em>(2), 170–176. [CI: Missing volume/issue? 7(2) is likely correct]
  38. Gbaguidi, V. S., Kiki, Y. T., Zevounou, C., Vedogbeton, N., &amp; Zankpe, M. (2018). Identification of the strata of lateritic soils and alterites in Benin. <em>International Journal of Advanced Research, 6</em>(9), 282–293. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.21474/IJAR01/7674" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.21474/IJAR01/7674</a>">https://doi.org/10.21474/IJAR01/7674</ext-link>
  39. Association Française de Normalisation (AFNOR). (2016). *NF EN ISO 17892-4: Geotechnical investigation and testing — Laboratory testing of soil — Part 4: Determination of particle size distribution* (Standard).
  40. Association Française de Normalisation (AFNOR). (2014). *NF EN ISO 17892-1: Geotechnical investigation and testing — Laboratory testing of soil — Part 1: Determination of water content* (Standard).
  41. Association Française de Normalisation (AFNOR). (2018). *NF EN ISO 17892-12: Geotechnical investigation and testing — Laboratory testing of soil — Part 12: Determination of Atterberg limits* (Standard).
  42. Association Française de Normalisation (AFNOR). (2014). *NF EN ISO 17892-2: Geotechnical investigation and testing — Laboratory testing of soil — Part 2: Determination of bulk density* (Standard).
  43. Association Française de Normalisation (AFNOR). (1998). *NF P94-068: Soils: investigation and testing — Determination of the methylene blue value of a soil — Stain test method* (Standard).
  44. Association Française de Normalisation (AFNOR). (1999). *NF P94-093: Soils: investigation and testing — Determination of the compaction reference values of a soil — Standard Proctor test — Modified Proctor test* (Standard).
  45. Association Française de Normalisation (AFNOR). (1997). *NF P94-078: Soils: investigation and testing — CBR after immersion — Immediate CBR — Immediate bearing ratio — Measurement on sample compacted in CBR mold* (Standard).
  46. Centre Experimental de Recherches et d’Etudes du Bâtiment et des Travaux Publics (CEBTP). (1972). <em>Road design manual for tropical countries</em>. Ministry of Foreign Affairs. [CI: Missing publisher location? Paris is likely]
  47. Centre Experimental de Recherches et d’Etudes du Bâtiment et des Travaux Publics (CEBTP). (1984). <em>Practical guide for road design in tropical countries</em>. Ministry of External Relations. [CI: Missing publisher location? Paris is likely]
  48. Centre Experimental de Recherches et d’Etudes du Bâtiment et des Travaux Publics (CEBTP). (2019). <em>Review of the practical guide for road design in tropical countries</em>. [CI: Missing publisher and location]
  49. Pompo, D. (2021). <em>World production and consumption of ceramic tiles 2021</em>. Ceramic Tile and Stone Consultants (CTaSC). <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="https://ctasc.com/world-production-and-consumption-of-ceramic-tiles-2021/">https://ctasc.com/world-production-and-consumption-of-ceramic-tiles-2021/</ext-link>
  50. Umar, T., Tahir, A., Egbu, C., Honnurvali, M. S., Saidani, M., &amp; Al-Bayati, A. J. (2021). Developing a sustainable concrete using ceramic waste powder. In S. M. Ahmed, P. Hampton, S. Azhar, &amp; A. D. Saul (Eds.), <em>Collaboration and integration in construction, engineering, management and technology</em> (pp. 157–162). Springer. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1007/978-3-030-48465-1_27" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1007/978-3-030-48465-1_27</a>">https://doi.org/10.1007/978-3-030-48465-1_27</ext-link>
  51. International Organization for Standardization (ISO). (2021). *ISO 22475-1:2021: Geotechnical investigation and testing — Sampling methods and groundwater measurements — Part 1: Technical principles for the sampling of soil, rock and groundwater* (Standard).
  52. European Committee for Standardization (CEN). (2003). *EN 13925-1:2003: Non-destructive testing — X-ray diffraction from polycrystalline and amorphous materials — Part 1: General principles* (Standard).
  53. Laboratoire Central des Ponts et Chaussées (LCPC) &amp; Service d’Études Techniques des Routes et Autoroutes (SETRA). (2000). <em>Guide des terrassements routiers (GTR)</em>. LCPC. [CI: Missing publisher location? Paris is likely]
  54. Koranne, S. S., &amp; Valunjkar, S. S. (2015). Utilisation of steel slag in roads of Marathwada Region. <em>International Journal of Innovations in Engineering Research and Technology, 2</em>(7), 1–7. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.17950/ijer/v5i1/037" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.17950/ijer/v5i1/037</a>">https://doi.org/10.17950/ijer/v5i1/037</ext-link> [CI: DOI likely incorrect for this citation]
  55. Jimoh, Y. A., &amp; Apampa, O. A. (2014). An evaluation of the influence of corn cob ash on the strength parameters of lateritic soils. <em>Civil and Environmental Research, 6</em>(5), 1–10. [CI: Missing publisher and URL/DOI if available online]
  56. Atiea, H. M., Albahrani, H. S., Allaban, M. F., Alhadithi, A. I., &amp; Jaba, Q. A. (2025). Ceramic waste as fine and coarse aggregates for sustainable environment and fire-resistant buildings. <em>Civil and Environmental Engineering, 21</em>(1), 535–544. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.2478/cee-2025-0040" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.2478/cee-2025-0040</a>">https://doi.org/10.2478/cee-2025-0040</ext-link> [CI: Formatted author names correctly]
  57. Al-Dulaimi, A. A., &amp; Mohammed, M. K. (2023). Investigation of using waste glass powder (WGP) as a partial natural sand replacement in concrete for a potential use in Iraqi construction field. <em>Civil and Environmental Engineering, 19</em>(2), 458–468. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.2478/cee-2023-0020" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.2478/cee-2023-0020</a>">https://doi.org/10.2478/cee-2023-0020</ext-link> [CI: Added page range from journal website]
  58. Shabeeb, K. M., &amp; Al-Khafaji, S. A. (2024). Study the re-use of construction and demolition waste for friendlier environment: Waste concrete and waste granite aggregates. <em>Civil and Environmental Engineering, 20</em>(2), 496–507. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.2478/cee-2024-0017" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.2478/cee-2024-0017</a>">https://doi.org/10.2478/cee-2024-0017</ext-link> [CI: Added page range from journal website]
DOI: https://doi.org/10.2478/cee-2026-0019 | Journal eISSN: 2199-6512 | Journal ISSN: 1336-5835
Language: English
Submitted on: Aug 1, 2025
Accepted on: Aug 17, 2025
Published on: Oct 8, 2025
Published by: Sciendo
In partnership with: Paradigm Publishing Services
Publication frequency: 2 times per year

© 2025 Coovi Rocambols Thède Agbelele, Valéry K. Doko, Edem Chabi, Boris Ganmavo, Mohamed Gibigaye, published by Sciendo
This work is licensed under the Creative Commons Attribution 4.0 License.

AHEAD OF PRINT