Have a personal or library account? Click to login
A Two-Stage XGBoost Approach for Mapping Arable and Non-Arable Soils under Salinity Stress in Southern Iraq Cover

A Two-Stage XGBoost Approach for Mapping Arable and Non-Arable Soils under Salinity Stress in Southern Iraq

Open Access
|Oct 2025

References

  1. Abbas, J. A. A. (2023). Soil salinity assessment by using spectral salinity indices in Al-Sweira project middle of the Iraqi alluvial plain. International Journal of Environmental Science and Technology, 20(10), 10847–10860. https://doi.org/10.1007/s13762-022-04733-4
  2. Abdulhussein, A. S. A., & Mihalache, M. (2022). The assessment of salinity-affected lands in southern Iraq using satellite imagery. Scientific Papers. Series A. Agronomy, 65(1).
  3. Aksoy, S., Sertel, E., Roscher, R., Tanik, A., & Hamzehpour, N. (2024). Assessment of soil salinity using explainable machine learning methods and Landsat 8 images. International Journal of Applied Earth Observation and Geoinformation, 130, 103879. https://doi.org/https://doi.org/10.1016/j.jag.2024.103879
  4. Al-Arazah, A. A. A., Naser, K. M., & Hamad, A. I. (2021). Use of Geographic Information Systems in Production of Salt Maps Prevailing in Al-maimuna project in Southern Iraq. Int. J. Agricult. Stat. Sci. Vol, 17(1), 1851–1860.
  5. Al-Hamdawi, R. M. N., & Al-Wally, N. S. S. (2020). EFFECT OF APPLICATION DIFFERENT LEVELS OF AZOLLA (AZOLLA FILICOIDES LAM.) IN SOME SOIL PHYSICAL PROPERTIES AND BARLEY (HORDEUM VULGARE L.) GROWTH INDICATORS. https://api.semanticscholar.org/CorpusID:228095346
  6. Al-Helaly, M. H., Alwan, I. A., & AL-Hameedawi, A. N. (2022). Environmental Investigation of Bahar Al-Najaf Region Using Sentinel-2 Images. Engineering and Technology Journal, 40(5), 732–742. https://doi.org/10.30684/etj.v40i5.2245
  7. Al-Jashaami, S., Almudhafar, S., & Almayahi, B. (2024). Desertification And Its Impact On Agricultural Production In Iraq. Library Progress (International), 44, 15103–15111. https://bpasjournals.com/library-science/index.php/journal/article/view/2034
  8. Al-Khuzaie, M. M., Abdul Maulud, K. N., & Mohd Taib, A. (2022). Soil salinity monitoring and quantification using modern techniques. Journal of Ecological Engineering, 23(11).
  9. Allan, R., Pereira, L., & Smith, M. (1998). Crop evapotranspiration-Guidelines for computing crop water requirements-FAO Irrigation and drainage paper 56 (Vol. 56).
  10. Alqasemi, A. S., Ibrahim, M., Fadhil Al-Quraishi, A. M., Saibi, H., Al-Fugara, A., & Kaplan, G. (2021). Detection and modeling of soil salinity variations in arid lands using remote sensing data. Open Geosciences, 13(1), 443–453.
  11. Brendel, A. S., Ferrelli, F., Piccolo, M. C., & Perillo, G. M. E. (2019). Assessment of the effectiveness of supervised and unsupervised methods: maximizing land-cover classification accuracy with spectral indices data. Journal of Applied Remote Sensing, 13(1), 14503. https://doi.org/10.1117/1.JRS.13.014503
  12. Chen, H., Wu, J., & Xu, C. (2025). Optimization of Multi-Source Remote Sensing Soil Salinity Estimation Based on Different Salinization Degrees. Remote Sensing, 17(7). https://doi.org/10.3390/rs17071315
  13. Chen, S., Arrouays, D., Leatitia Mulder, V., Poggio, L., Minasny, B., Roudier, P., Libohova, Z., Lagacherie, P., Shi, Z., Hannam, J., Meersmans, J., Richer-de-Forges, A. C., & Walter, C. (2022). Digital mapping of GlobalSoilMap soil properties at a broad scale: A review. Geoderma, 409, 115567. https://doi.org/https://doi.org/10.1016/j.geoderma.2021.115567
  14. Chen, T., & Guestrin, C. (2016). XGBoost: A Scalable Tree Boosting System. Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 785–794. https://doi.org/10.1145/2939672.2939785
  15. de Sousa, G. P. B., Bellinaso, H., Rosas, J. T. F., de Mello, D. C., Rosin, N. A., Amorim, M. T. A., dos Anjos Bartsch, B., C ardoso, M. C., Mallah, S., Francelino, M. R., Falcioni, R., Alves, M. R., & Demattê, J. A. M. (2024). Assessing soil degradation in Brazilian agriculture by a remote sensing approach to monitor bare soil frequency: impact on soil carbon. Soil Advances, 2, 100011. https://doi.org/https://doi.org/10.1016/j.soilad.2024.100011
  16. Demattê, J. A. M., Fongaro, C. T., Rizzo, R., & Safanelli, J. L. (2018). Geospatial Soil Sensing System (GEOS3): A powerful data mining procedure to retrieve soil spectral reflectance from satellite images. Remote Sensing of Environment, 212, 161–175. https://doi.org/https://doi.org/10.1016/j.rse.2018.04.047
  17. El-Hamid, H., Alshehri, F., El-Zeiny, A., & Nour-Eldin, H. (2023). Remote sensing and statistical analyses for exploration and prediction of soil salinity in a vulnerable area to seawater intrusion. Marine Pollution Bulletin, 187, 114555. https://doi.org/10.1016/j.marpolbul.2022.114555
  18. Esri. (2025). World Imagery. https://services.arcgisonline.com/ArcGIS/rest/services/World_Imagery/MapServer
  19. Ewaid, S. H., Kadhum, S. A., Abed, S. A., & Salih, R. M. (2019). Development and evaluation of irrigation water quality guide using IWQG V.1 software: A case study of Al-Gharraf Canal, Southern Iraq. Environmental Technology & Innovation, 13, 224–232. https://doi.org/https://doi.org/10.1016/j.eti.2018.12.001
  20. Gorji, T., Yildirim, A., Hamzehpour, N., Tanik, A., & Sertel, E. (2020). Soil salinity analysis of Urmia Lake Basin using Landsat-8 OLI and Sentinel- 2A based spectral indices and electrical conductivity measurements. Ecological Indicators, 112. https://doi.org/10.1016/j.ecolind.2020.106173
  21. Grieve, C., Grattan, S., & Maas, E. (2012). Plant Salt Tolerance. In Agricultural Salinity Assessment and Management (pp. 405–459). https://doi.org/10.1061/9780784411698.ch13
  22. Haj-Amor, Z., Araya, T., Kim, D.-G., Bouri, S., Lee, J., Ghiloufi, W., Yang, Y., Kang, H., Jhariya, M. K., Banerjee, A., & Lal, R. (2022). Soil salinity and its associated effects on soil microorganisms, greenhouse gas emissions, crop yield, biodiversity and desertification: A review. Science of The Total Environment, 843, 156946. https://doi.org/https://doi.org/10.1016/j.scitotenv.2022.156946
  23. Hakkal, S., & Lahcen, A. A. (2024). XGBoost To Enhance Learner Performance Prediction. Computers and Education: Artificial Intelligence, 7, 100254. https://doi.org/https://doi.org/10.1016/j.caeai.2024.100254
  24. Hasab, H., Ahmad, A., Marghany, M., & Ziboon, A. R. (2015). Landsat TM-8 data for retrieving salinity in al Huwaizah marsh, south of Iraq. Jurnal Teknologi, 75, 201–206. https://doi.org/10.11113/jt.v75.3988
  25. Hasan, S. H., Al-Hameedawi, A. N. M., & Ismael, H. S. (2021). Using Google Earth Engine development environment for remote sensing image analysis, Al Shuwija marsh case study. Journal of Physics: Conference Series, 1973(1), 012192. https://doi.org/10.1088/1742-6596/1973/1/012192
  26. Hassan, Z. D., & Hassan, S. F. (2024). Using Remote Sensing Techniques and Geographic Information Systems in Changes Detection of Marsh Al Dalmaj Period 2000-2017 and Its Impact on Some Engineering Properties. Iraqi Journal of Science, 64(2), 3212–3223. https://doi.org/10.24996/ijs.2024.65.6.21
  27. Hussein Al-Dubayani, & Razzaq Al-Atabi. (2019). Geochemical and fertility survey of some soils in the cities of Shatra and Al-Rifai in Dhi Qar Governorate, southern Iraq. (First Edition, Vol. 1). Dar Al-Sadiq Cultural Foundation.
  28. Ibrahim Hamad, A. (2016). The Use of Inverse Distance Weighted and Fuzzy Logic to Estimate Land Suitability by Geographic Information System in South of Iraq. Alexandria Science Exchange Journal, 37(January-March), 26–35. https://doi.org/10.21608/asejaiqjsae.2016.1919
  29. Jasim, B., Jasim, O., & AL-Hameedawi, A. (2024). Monitoring Change Detection of Vegetation Vulnerability Using Hotspots Analysis. IIUM Engineering Journal, 25, 116–129. https://doi.org/10.31436/iiumej.v25i2.3030
  30. Jiang, X., Duan, H., Liao, J., Guo, P., Huang, C., & Xue, X. (2022). Estimation of Soil Salinization by Machine Learning Algorithms in Different Arid Regions of Northwest China. Remote Sensing, 14(2). https://doi.org/10.3390/rs14020347
  31. Kadhim, Z., Khayyun, T., & Alwan, I. (2022). Impact of Climate Change on Crops Productivity Using MODIS-NDVI Time Series. Civil Engineering Journal, 8, 1136. https://doi.org/10.28991/CEJ-2022-08-06-04
  32. Khosravichenar, A., Aalijahan, M., Moaazeni, S., Lupo, A. R., Karimi, A., Ulrich, M., Parvian, N., Sadeghi, A., & von Suchodoletz, H. (2023). Assessing a multi-method approach for dryland soil salinization with respect to climate change and global warming – The example of the Bajestan region (NE Iran). Ecological Indicators, 154, 110639. https://doi.org/https://doi.org/10.1016/j.ecolind.2023.110639
  33. Kumar, P., Tiwari, P., Biswas, A., & Kumar Srivastava, P. (2024). Spatio-temporal assessment of soil salinization utilizing remote sensing derivatives, and prediction modeling: Implications for sustainable development. Geoscience Frontiers, 15(6), 101881. https://doi.org/https://doi.org/10.1016/j.gsf.2024.101881
  34. Ma, G., Ding, J., Han, L., Zhang, Z., & Ran, S. (2021a). Digital mapping of soil salinization based on Sentinel-1 and Sentinel-2 data combined with machine learning algorithms. Regional Sustainability, 2(2), 177–188. https://doi.org/https://doi.org/10.1016/j.regsus.2021.06.001
  35. Ma, G., Ding, J., Han, L., Zhang, Z., & Ran, S. (2021b). Digital mapping of soil salinization based on Sentinel-1 and Sentinel-2 data combined with machine learning algorithms. Regional Sustainability, 2(2), 177–188. https://doi.org/https://doi.org/10.1016/j.regsus.2021.06.001
  36. Makki, J. S., Dakheel, A. A., & Al-Zaidi, B. M. (2025). Prediction of the Pollution Index in Al Khamissiya Canal, Thi Qar Province, Iraq. Civil and Environmental Engineering, 21(1), 427–436. https://doi.org/10.2478/cee-2025-0033
  37. Manar Majid Hameed, Sarmad Sajid Badr, & Saleem Ethab Muhammad. (2025). The Water Scarcity and Its Impact on Environmental Displacement in Dhi-Qar Governorate. Zanco Journal of Humanity Sciences, 29(Con.1), 560–576. https://doi.org/10.21271/zjhs.29.Con.1.39
  38. Mohammed Haran. (2019). Effect of bacterial inoculation, phosphorus levels in growth and yield of maize (Zea mays L.) and Salinity of irrigating water. University of Basra.
  39. Mukhamediev, R. I., Merembayev, T., Kuchin, Y., Malakhov, D., Zaitseva, E., Levashenko, V., Popova, Y., Symagulov, A., Sagatdinova, G., & Amirgaliyev, Y. (2023). Soil Salinity Estimation for South Kazakhstan Based on SAR Sentinel -1 and Landsat-8,9 OLI Data with Machine Learning Models. Remote Sensing, 15(17). https://doi.org/10.3390/rs15174269
  40. Muslim, R. I., Al-Ghasham, N. A. O., & Al-Mayyahi, S. O. M. (2023). The Geochemical Temporal Changes of the Salinity in Selected Agricultural Areas in Mid-Mesopotamian. IOP Conference Series: Earth and Environmental Science, 1158(2), 22021. https://doi.org/10.1088/1755-1315/1158/2/022021
  41. Nguyen, C. T., Chidthaisong, A., Kieu Diem, P., & Huo, L.-Z. (2021). A Modified Bare Soil Index to Identify Bare Land Features during Agricultural Fallow-Period in Southeast Asia Using Landsat 8. Land, 10(3). https://doi.org/10.3390/land10030231
  42. Nofrizal, Fauzan, Hakam, A., Istijono, B., & Aprisal. (2025). Analysis of the Effect of Rainfall Intensity and Slope Steepness on Landslide Disaster. Civil and Environmental Engineering, 0(0). https://doi.org/10.2478/cee-2025-0073
  43. Nurmemet, I., Ghulam, A., Tiyip, T., Elkadiri, R., Ding, J.-L., Maimaitiyiming, M., Abliz, A., Sawut, M., Zhang, F., Abliz, A., & Sun, Q. (2015). Monitoring Soil Salinization in Keriya River Basin, Northwestern China Using Passive Reflective and Active Microwave Remote Sensing Data. Remote Sensing, 7(7), 8803–8829. https://doi.org/10.3390/rs70708803
  44. Omuto, C., Vargas, R., Abdelmagid, E., Mohammed, N., Viatkin, K., & Yusuf, Y. (2021). MAPPING OF SALT-AFFECTED SOILS. https://doi.org/10.4060/ca9215en
  45. Poppiel, R. R., Lacerda, M. P. C., Safanelli, J. L., Rizzo, R., Oliveira, M. P., Novais, J. J., & Demattê, J. A. M. (2019). Mapping at 30 m Resolution of Soil Attributes at Multiple Depths in Midwest Brazil. Remote Sensing, 11(24). https://doi.org/10.3390/rs11242905
  46. Prăvălie, R. (2021). Exploring the multiple land degradation pathways across the planet. Earth-Science Reviews, 220, 103689. https://doi.org/10.1016/j.earscirev.2021.103689
  47. Raheem, M. A., & Hatem, A. J. (2019). Calculation of Salinity and Soil Moisture indices in south of Iraq - Using Satellite Image Data. Energy Procedia, 157, 228–233. https://doi.org/https://doi.org/10.1016/j.egypro.2018.11.185
  48. Shokri, N., Hassani, A., & Sahimi, M. (2024). Multi-scale soil salinization dynamics from global to pore scale: A review. Reviews of Geophysics, 62(4), e2023RG000804.
  49. Singh, A. (2022). Soil salinity: A global threat to sustainable development. Soil Use and Management, 38(1), 39–67. https://doi.org/https://doi.org/10.1111/sum.12772
  50. Taleb Kadhum, S., & Hussain, A. (2011). A Study of Changes in the Chemical Properties of Soil due to Irrigation by Polluted River Water (Army Canal in Baghdad) for a Long Period. Engineering and Technology Journal, 29(6), 1032–1051. https://doi.org/10.30684/etj.29.6.1
  51. Talib mujyfi. (2020). Classificcation an evaluation of AL-Batha district lands in Dhi-Qar governorate [University of Dhi Qar]. https://library.alkafeel.net/dic/details/275697/
  52. Tawfiq, S. Z. (2020). Population growth rates and their impact on arable land in Dhi Qar Governorate. Alustath Journal for Human and Social Sciences, 214, 371–398. https://doi.org/10.36473/ujhss.v214i1.1457
  53. Tedeschi, A., Schillaci, M., & Balestrini, R. (2023). Mitigating the impact of soil salinity: recent developments and future strategies. Italian Journal of Agronomy, 18(2), 2173. https://doi.org/https://doi.org/10.4081/ija.2023.2173
  54. Walli, M. H., Zargar, M., Al-Hasnawi, A. N., & Al-Jubouri, Z. (2025). Impact of Global Climate Change on Soil Properties and Water Resources: Review Article. IOP Conference Series: Earth and Environmental Science, 1487(1), 12203. https://doi.org/10.1088/1755-1315/1487/1/012203
  55. Wang, N., Xue, J., Peng, J., Biswas, A., He, Y., & Shi, Z. (2020). Integrating Remote Sensing and Landscape Characteristics to Estimate Soil Salinity Using Machine Learning Methods: A Case Study from Southern Xinjiang, China. Remote Sensing, 12(24). https://doi.org/10.3390/rs12244118
  56. Yu, H., Wang, Z., Mao, D., Jia, M., Chang, S., & Li, X. (2023). Spatiotemporal variations of soil salinization in China’s West Songnen Plain. Land Degradation & Development, 34(8), 2366–2378. https://doi.org/https://doi.org/10.1002/ldr.4613
  57. Zanaga, D., Van De Kerchove, R., De Keersmaecker, W., Souverijns, N., Brockmann, C., Quast, R., Wevers, J., Grosu, A., Paccini, A., Vergnaud, S., Cartus, O., Santoro, M., Fritz, S., Georgieva, I., Lesiv, M., Carter, S., Herold, M., Li, L., Tsendbazar, N.-E., … Arino, O. (2021). ESA WorldCover 10 m 2020 v100. Zenodo. https://doi.org/10.5281/zenodo.5571936
  58. Zarei, A., Hasanlou, M., & Mahdianpari, M. (2021). A COMPARISON OF MACHINE LEARNING MODELS FOR SOIL SALINITY ESTIMATION USING MULTI-SPECTRAL EARTH OBSERVATION DATA. ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, V-3–2021, 257–263. https://doi.org/10.5194/isprs-annals-V-3-2021-257-2021
  59. Zhao, S., Ayoubi, S., Mousavi, S. R., Mireei, S. A., Shahpouri, F., Wu, S., Chen, C., Zhao, Z., & Tian, C. (2024). Integratin g proximal soil sensing data and environmental variables to enhance the prediction accuracy for soil salinity and sodicity in a region of Xinjiang Province, China. Journal of Environmental Management, 364, 121311. https://doi.org/https://doi.org/10.1016/j.jenvman.2024.121311
  60. Zheng, W., Yang, Z., Wang, X., Wang, H., Yu, X., Wang, L.-P., & He, B. (2022). Impacts of evaporation and inundation on near-surface salinity at a coastal wetland park. Marine Pollution Bulletin, 185, 114373. https://doi.org/10.1016/j.marpolbul.2022.114373
  61. Ziboon, A., Albayati, M., & Dalhel, F. (2022). Monitoring Soil Degradation in The Mesopotamian Plain Using GIS and Remote sensing Techniques. Engineering and Technology Journal, 40(5), 649–660. https://doi.org/10.30684/etj.v40i5.2121
DOI: https://doi.org/10.2478/cee-2026-0017 | Journal eISSN: 2199-6512 | Journal ISSN: 1336-5835
Language: English
Submitted on: Jul 12, 2025
Accepted on: Aug 15, 2025
Published on: Oct 8, 2025
Published by: University of Žilina
In partnership with: Paradigm Publishing Services
Publication frequency: 2 issues per year

© 2025 Mohammed Azeez, Hisham M. Jawad Al Sharaa, Abdul Razzak T. Zboon, published by University of Žilina
This work is licensed under the Creative Commons Attribution 4.0 License.

AHEAD OF PRINT