Al-Allaf, M. H., Daud, R. A., & Daud, S. A. (2024). Nonlinear finite element analysis of concrete corbels with hybrid reinforcements. <em>Mechanics of Advanced Materials and Structures</em>, 1–11. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1080/15376494.2024.2420910" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1080/15376494.2024.2420910</a>">https://doi.org/10.1080/15376494.2024.2420910</ext-link>
Al-Allaf, M. H., Weekes, L., & Augusthus-Nelson, L. (2015). Experimental study on bond-slip behaviour between CFRP sheets and lightweight concrete. In <em>Proceedings of the 8th Biennial Conference on Advanced Composites in Construction (ACIC 2015)</em>. Cambridge, UK: Chesterfield, UK: NetComposites Ltd.
Alkaysi, M., El-Tawil, S., Liu, Z., & Hansen, W. (2016). Effects of silica powder and cement type on durability of ultra-high-performance concrete (UHPC). <em>Cement and Concrete Composites</em>, 66, 47–56. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1016/j.cemconcomp.2015.11.005" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.cemconcomp.2015.11.005</a>">https://doi.org/10.1016/j.cemconcomp.2015.11.005</ext-link>
Al-Kamaki, Y. S. S. (2025). <em>Flexural repair of pre-loaded and pre-damaged RC beams using anchored hybrid FRP composites. Civil and Environmental Engineering</em>, <em>0</em>(0). <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.2478/cee-2025-0083" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.2478/cee-2025-0083</a>">https://doi.org/10.2478/cee-2025-0083</ext-link>
American Concrete Institute. (2019). <em>Building code requirements for structural concrete (ACI 318-19) and commentary</em>. Farmington Hills, MI: American Concrete Institute.
American Concrete Institute. (2017). <em>Guide for the design and construction of externally bonded FRP systems for strengthening concrete structures (ACI 440.2R-17)</em>. Farmington Hills, MI: American Concrete Institute.
Andrade, C., & Torres, J. (2013). Long-term carbonation of UHPC. In <em>RILEM-Fib-AFGC International Symposium on Ultra-High Performance Fiber-reinforced Concrete (UHPFRC 2013)</em>, 4, 249–256.
Arunothayan, A. R., Nematollahi, B., Ranade, R., Bong, S. H., & Sanjayan, J. (2020). Development of 3D-printable ultra-high-performance fiber-reinforced concrete for digital construction. <em>Construction and Building Materials</em>, 257. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1016/j.conbuildmat.2020.119546" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.conbuildmat.2020.119546</a>">https://doi.org/10.1016/j.conbuildmat.2020.119546</ext-link>
ASTM International. (2017). ASTM C1856/C1856M-17 - Standard practice for fabricating and testing specimens of ultra-high-performance concrete. ASTM Int. 04.02. Retrieved from <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="https://www.astm.org">https://www.astm.org</ext-link>
Azreen, N. M., Rashid, R. S. M., Haniza, M., Voo, Y. L., & Mugahed Amran, Y. H. (2018). Radiation shielding of ultra-high-performance concrete with silica sand, amang and lead glass. <em>Construction and Building Materials</em>, 172, 370–377. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1016/j.conbuildmat.2018.03.243" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.conbuildmat.2018.03.243</a>">https://doi.org/10.1016/j.conbuildmat.2018.03.243</ext-link>
Azreen, N. M., Rashid, R. S. M., Mugahed Amran, Y. H., Voo, Y. L., Haniza, M., Hairie, M., Alyousef, R., & Alabduljabbar, H. (2020). Simulation of ultra-high-performance concrete mixed with hematite and barite aggregates using Monte Carlo for dry cask storage. <em>Construction and Building Materials</em>, 263. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1016/j.conbuildmat.2020.120161" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.conbuildmat.2020.120161</a>">https://doi.org/10.1016/j.conbuildmat.2020.120161</ext-link>
Bajaber, M. A., & Hakeem, I. Y. (2021). UHPC evolution, development, and utilization in construction: A review. <em>Journal of Materials Research and Technology</em>, 10, 1058–1074. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1016/j.jmrt.2020.12.051" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.jmrt.2020.12.051</a>">https://doi.org/10.1016/j.jmrt.2020.12.051</ext-link>
Daniel, J. I., Ahmad, S. H., Arockiasamy, M., & Ball, H. P. et al. (2002). State-of-the-art report on fiber reinforced concrete reported by ACI Committee 544.
Du, J., Meng, W., Khayat, K. H., Bao, Y., Guo, P., Lyu, Z., Abu-obeidah, A., Nassif, H., & Wang, H. (2021). New development of ultra-high-performance concrete (UHPC). <em>Composites Part B: Engineering</em>, 224. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1016/j.compositesb.2021.109220" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.compositesb.2021.109220</a>">https://doi.org/10.1016/j.compositesb.2021.109220</ext-link>
Ganesh, P., & Murthy, A. R. (2019). Tensile behavior and durability aspects of sustainable ultra-high performance concrete incorporated with GGBS as cementitious material. <em>Construction and Building Materials</em>, 197, 667–680. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1016/j.conbuildmat.2018.11.240" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.conbuildmat.2018.11.240</a>">https://doi.org/10.1016/j.conbuildmat.2018.11.240</ext-link>
Habert, G., Denarié, E., Šajna, A., & Rossi, P. (2013). Lowering the global warming impact of bridge rehabilitations by using ultra-high-performance fiber reinforced concretes. <em>Cement and Concrete Composites</em>, 38, 1–11. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1016/j.cemconcomp.2012.11.008" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.cemconcomp.2012.11.008</a>">https://doi.org/10.1016/j.cemconcomp.2012.11.008</ext-link>
Hirschi, T., & Wombacher, F. (2008). Influence of different superplasticizers on UHPC. In <em>2nd International Symposium on Ultra-High Performance Concrete</em> (pp. 77–84).
Imam, N., Sharma, K. K., Kumar, V., & Singh, A. (2022). A review study on sustainable development of ultra-high-performance concrete. <em>AIMS Materials Science</em>, 9, 9–35.
Kalny, M., Kvasnicka, V., & Komanec, J. (2016). First practical applications of UHPC in the Czech Republic. In <em>Proc. Hipermat 2016 - 4th International Symposium on UHPC Nanotechnology in Construction Materials</em> (pp. 147–148).
Kazem, Z. U. M., & Abd Al-Zahra, B. I. (2025). <em>Performance enhancement of reinforced concrete one-way slabs with maximum-moment openings using CFRP strengthening techniques: Experimental and numerical analysis. Civil and Environmental Engineering</em>, <em>21</em>(1), 475–498. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.2478/cee-2025-0036" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.2478/cee-2025-0036</a>">https://doi.org/10.2478/cee-2025-0036</ext-link>
Larsen, I. L., Granseth Aasbakken, I., O’Born, R., Vertes, K., & Thorstensen, R. T. (2017). Determining the environmental benefits of ultra-high-performance concrete as a bridge construction material. <em>IOP Conference Series: Materials Science and Engineering</em>, 245(5), 052096. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1088/1757-899X/245/5/052096" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1088/1757-899X/245/5/052096</a>">https://doi.org/10.1088/1757-899X/245/5/052096</ext-link>
Lateef, H. E., Hameed Al-Allaf, M., & Daud, R. A. (2024). Experimental study on bond-slip behavior of NSM-CFRP plate and recycled aggregates concrete substrate. <em>Innovative Infrastructure Solutions</em>, 9(10), 368.
Maida, J. (2022). Global ultra-high performance concrete market - Increasing demand for RPC to boost growth. Business Wire, a Berkshire Hathaway Company - Technavio Research.
Mishra, O., & Singh, S. P. (2019). An overview of microstructural and material properties of ultra-high performance concrete. <em>Journal of Sustainable Cement-Based Materials</em>, 8, 97–143. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1080/21650373.2018.1564398" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1080/21650373.2018.1564398</a>">https://doi.org/10.1080/21650373.2018.1564398</ext-link>
Mueller, U., Williams Portal, N., Chozas, V., Flansbjer, M., Larazza, I., da Silva, N., & Malaga, K. (2016). Reactive powder concrete for façade elements – A sustainable approach. <em>Journal of Facade Design and Engineering</em>, 4, 53–66. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.3233/fde-160051" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.3233/fde-160051</a>">https://doi.org/10.3233/fde-160051</ext-link>
National Research Council (CNR). (2018). <em>Guidelines for the design and construction of externally bonded FRP systems for strengthening existing structures (CNR-DT-215/2018)</em>. Rome, Italy: Italian National Research Council.
Park, S., Lee, N., An, G. H., Koh, K. T., & Ryu, G. S. (2021). Modeling the effect of alternative cementitious binders in ultra-high-performance concrete. <em>Materials (Basel)</em>, 14. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.3390/ma14237333" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.3390/ma14237333</a>">https://doi.org/10.3390/ma14237333</ext-link>
Schmidt, M., & Fehling, E. (2005). Ultra-high-performance concrete: Research, development, and application in Europe. In <em>American Concrete Institute</em>, ACI Spec. Publ. (pp. 51–77).
Shi, C., Wu, Z., Xiao, J., Wang, D., Huang, Z., & Fang, Z. (2015). A review on ultra-high-performance concrete: Part I. Raw materials and mixture design. <em>Construction and Building Materials</em>, 101, 741–751. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1016/j.conbuildmat.2015.10.088" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.conbuildmat.2015.10.088</a>">https://doi.org/10.1016/j.conbuildmat.2015.10.088</ext-link>
Tanaka, Y., Maekawa, K., Kameyama, Y., Ohtake, A., Musha, H., & Watanabe, N. (2013). The innovation and application of UHPFRC bridges in Japan. In <em>Design and Build with UHPFRC</em> (pp. 149–188). <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1002/9781118557839.ch12" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1002/9781118557839.ch12</a>">https://doi.org/10.1002/9781118557839.ch12</ext-link>
Wang, D., Shi, C., Wu, Z., Xiao, J., Huang, Z., & Fang, Z. (2015). A review on ultra-high-performance concrete: Part II. Hydration, microstructure and properties. <em>Construction and Building Materials</em>, 96, 368–377. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1016/j.conbuildmat.2015.08.095" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.conbuildmat.2015.08.095</a>">https://doi.org/10.1016/j.conbuildmat.2015.08.095</ext-link>
Wille, K., & Naaman, A. E. (2012). Pullout behavior of high-strength steel fibers embedded in ultra-high-performance concrete. <em>ACI Materials Journal</em>. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.14359/51683923" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.14359/51683923</a>">https://doi.org/10.14359/51683923</ext-link>
Xue, J., Briseghella, B., Huang, F., Nuti, C., Tabatabai, H., & Chen, B. (2020). Review of ultra-high performance concrete and its application in bridge engineering. <em>Construction and Building Materials</em>, 260. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1016/j.conbuildmat.2020.119844" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.conbuildmat.2020.119844</a>">https://doi.org/10.1016/j.conbuildmat.2020.119844</ext-link>
Yoo, D. Y., Kang, S. T., & Yoon, Y. S. (2016). Enhancing the flexural performance of ultra-high performance concrete using long steel fibers. <em>Composites Structures</em>, 147, 220–230. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1016/j.compstruct.2016.03.032" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.compstruct.2016.03.032</a>">https://doi.org/10.1016/j.compstruct.2016.03.032</ext-link>
Zarzour, A. M., Almutairi, A. L., Ahmed, S. N., Hamid, W. K., & Abdalla, H. A. (2025). <em>Repairing of RC beams with openings subjected to torsion using CFRP. Civil and Environmental Engineering</em>, <em>21</em>(1), 617–631. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.2478/cee-2025-0047" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.2478/cee-2025-0047</a>">https://doi.org/10.2478/cee-2025-0047</ext-link>