Have a personal or library account? Click to login
Strengthening of Ultra-High Performance Concrete Beams with CFRP Strips Cover

Strengthening of Ultra-High Performance Concrete Beams with CFRP Strips

Open Access
|Oct 2025

References

  1. Al-Allaf, M. H., Daud, R. A., &amp; Daud, S. A. (2024). Nonlinear finite element analysis of concrete corbels with hybrid reinforcements. <em>Mechanics of Advanced Materials and Structures</em>, 1–11. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1080/15376494.2024.2420910" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1080/15376494.2024.2420910</a>">https://doi.org/10.1080/15376494.2024.2420910</ext-link>
  2. Al-Allaf, M. H., Weekes, L., &amp; Augusthus-Nelson, L. (2015). Experimental study on bond-slip behaviour between CFRP sheets and lightweight concrete. In <em>Proceedings of the 8th Biennial Conference on Advanced Composites in Construction (ACIC 2015)</em>. Cambridge, UK: Chesterfield, UK: NetComposites Ltd.
  3. Alkaysi, M., El-Tawil, S., Liu, Z., &amp; Hansen, W. (2016). Effects of silica powder and cement type on durability of ultra-high-performance concrete (UHPC). <em>Cement and Concrete Composites</em>, 66, 47–56. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1016/j.cemconcomp.2015.11.005" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.cemconcomp.2015.11.005</a>">https://doi.org/10.1016/j.cemconcomp.2015.11.005</ext-link>
  4. Al-Kamaki, Y. S. S. (2025). <em>Flexural repair of pre-loaded and pre-damaged RC beams using anchored hybrid FRP composites. Civil and Environmental Engineering</em>, <em>0</em>(0). <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.2478/cee-2025-0083" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.2478/cee-2025-0083</a>">https://doi.org/10.2478/cee-2025-0083</ext-link>
  5. American Concrete Institute. (2019). <em>Building code requirements for structural concrete (ACI 318-19) and commentary</em>. Farmington Hills, MI: American Concrete Institute.
  6. American Concrete Institute. (2017). <em>Guide for the design and construction of externally bonded FRP systems for strengthening concrete structures (ACI 440.2R-17)</em>. Farmington Hills, MI: American Concrete Institute.
  7. Andrade, C., &amp; Torres, J. (2013). Long-term carbonation of UHPC. In <em>RILEM-Fib-AFGC International Symposium on Ultra-High Performance Fiber-reinforced Concrete (UHPFRC 2013)</em>, 4, 249–256.
  8. Arunothayan, A. R., Nematollahi, B., Ranade, R., Bong, S. H., &amp; Sanjayan, J. (2020). Development of 3D-printable ultra-high-performance fiber-reinforced concrete for digital construction. <em>Construction and Building Materials</em>, 257. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1016/j.conbuildmat.2020.119546" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.conbuildmat.2020.119546</a>">https://doi.org/10.1016/j.conbuildmat.2020.119546</ext-link>
  9. ASTM International. (2017). ASTM C1856/C1856M-17 - Standard practice for fabricating and testing specimens of ultra-high-performance concrete. ASTM Int. 04.02. Retrieved from <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="https://www.astm.org">https://www.astm.org</ext-link>
  10. Azreen, N. M., Rashid, R. S. M., Haniza, M., Voo, Y. L., &amp; Mugahed Amran, Y. H. (2018). Radiation shielding of ultra-high-performance concrete with silica sand, amang and lead glass. <em>Construction and Building Materials</em>, 172, 370–377. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1016/j.conbuildmat.2018.03.243" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.conbuildmat.2018.03.243</a>">https://doi.org/10.1016/j.conbuildmat.2018.03.243</ext-link>
  11. Azreen, N. M., Rashid, R. S. M., Mugahed Amran, Y. H., Voo, Y. L., Haniza, M., Hairie, M., Alyousef, R., &amp; Alabduljabbar, H. (2020). Simulation of ultra-high-performance concrete mixed with hematite and barite aggregates using Monte Carlo for dry cask storage. <em>Construction and Building Materials</em>, 263. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1016/j.conbuildmat.2020.120161" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.conbuildmat.2020.120161</a>">https://doi.org/10.1016/j.conbuildmat.2020.120161</ext-link>
  12. Bajaber, M. A., &amp; Hakeem, I. Y. (2021). UHPC evolution, development, and utilization in construction: A review. <em>Journal of Materials Research and Technology</em>, 10, 1058–1074. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1016/j.jmrt.2020.12.051" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.jmrt.2020.12.051</a>">https://doi.org/10.1016/j.jmrt.2020.12.051</ext-link>
  13. Concrete Society. (2012). <em>Design guidance for strengthening concrete structures using fibre composite materials (Technical Report 55 – TR55, 3rd ed.)</em>. Camberley, UK: The Concrete Society.
  14. Daniel, J. I., Ahmad, S. H., Arockiasamy, M., &amp; Ball, H. P. et al. (2002). State-of-the-art report on fiber reinforced concrete reported by ACI Committee 544.
  15. Du, J., Meng, W., Khayat, K. H., Bao, Y., Guo, P., Lyu, Z., Abu-obeidah, A., Nassif, H., &amp; Wang, H. (2021). New development of ultra-high-performance concrete (UHPC). <em>Composites Part B: Engineering</em>, 224. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1016/j.compositesb.2021.109220" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.compositesb.2021.109220</a>">https://doi.org/10.1016/j.compositesb.2021.109220</ext-link>
  16. Ganesh, P., &amp; Murthy, A. R. (2019). Tensile behavior and durability aspects of sustainable ultra-high performance concrete incorporated with GGBS as cementitious material. <em>Construction and Building Materials</em>, 197, 667–680. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1016/j.conbuildmat.2018.11.240" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.conbuildmat.2018.11.240</a>">https://doi.org/10.1016/j.conbuildmat.2018.11.240</ext-link>
  17. Ghasemi, S., Zohrevand, P., Mirmiran, A., Xiao, Y., &amp; Mackie, K. (2016). A super lightweight UHPC-HSS deck panel for movable bridges. <em>Engineering Structures</em>, 113, 186–193. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1016/j.engstruct.2016.01.046" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.engstruct.2016.01.046</a>">https://doi.org/10.1016/j.engstruct.2016.01.046</ext-link>
  18. Habert, G., Denarié, E., Šajna, A., &amp; Rossi, P. (2013). Lowering the global warming impact of bridge rehabilitations by using ultra-high-performance fiber reinforced concretes. <em>Cement and Concrete Composites</em>, 38, 1–11. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1016/j.cemconcomp.2012.11.008" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.cemconcomp.2012.11.008</a>">https://doi.org/10.1016/j.cemconcomp.2012.11.008</ext-link>
  19. Hirschi, T., &amp; Wombacher, F. (2008). Influence of different superplasticizers on UHPC. In <em>2nd International Symposium on Ultra-High Performance Concrete</em> (pp. 77–84).
  20. Imam, N., Sharma, K. K., Kumar, V., &amp; Singh, A. (2022). A review study on sustainable development of ultra-high-performance concrete. <em>AIMS Materials Science</em>, 9, 9–35.
  21. Ismaeel, A. M., &amp; others. (2024). <em>Creating sustainable ultra-high-performance concrete (UHPC) utilizing recycled glass. Civil and Environmental Engineering</em>, <em>20</em>(2), 1152–1161. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.2478/cee-2024-0084" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.2478/cee-2024-0084</a>">https://doi.org/10.2478/cee-2024-0084</ext-link>
  22. Kalny, M., Kvasnicka, V., &amp; Komanec, J. (2016). First practical applications of UHPC in the Czech Republic. In <em>Proc. Hipermat 2016 - 4th International Symposium on UHPC Nanotechnology in Construction Materials</em> (pp. 147–148).
  23. Kazem, Z. U. M., &amp; Abd Al-Zahra, B. I. (2025). <em>Performance enhancement of reinforced concrete one-way slabs with maximum-moment openings using CFRP strengthening techniques: Experimental and numerical analysis. Civil and Environmental Engineering</em>, <em>21</em>(1), 475–498. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.2478/cee-2025-0036" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.2478/cee-2025-0036</a>">https://doi.org/10.2478/cee-2025-0036</ext-link>
  24. Koteš, P., Farbák, M., Kotula, P., Brodňan, M., &amp; Čavojcová, A. (2013). <em>Using CFRP lamellas for strengthening of dynamically loaded beams. Procedia Engineering</em>, <em>65</em>, 302–310. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1016/j.proeng.2013.09.047" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.proeng.2013.09.047</a>">https://doi.org/10.1016/j.proeng.2013.09.047</ext-link>
  25. Kotula, P., Koteš, P., &amp; Brodňan, M. (2013). <em>Experimental and numerical analysis of anchorage zone of CFRP sheet. Procedia Engineering</em>, <em>65</em>, 176–185. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1016/j.proeng.2013.09.028" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.proeng.2013.09.028</a>">https://doi.org/10.1016/j.proeng.2013.09.028</ext-link>
  26. Larsen, I. L., Granseth Aasbakken, I., O’Born, R., Vertes, K., &amp; Thorstensen, R. T. (2017). Determining the environmental benefits of ultra-high-performance concrete as a bridge construction material. <em>IOP Conference Series: Materials Science and Engineering</em>, 245(5), 052096. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1088/1757-899X/245/5/052096" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1088/1757-899X/245/5/052096</a>">https://doi.org/10.1088/1757-899X/245/5/052096</ext-link>
  27. Lateef, H. E., Hameed Al-Allaf, M., &amp; Daud, R. A. (2024). Experimental study on bond-slip behavior of NSM-CFRP plate and recycled aggregates concrete substrate. <em>Innovative Infrastructure Solutions</em>, 9(10), 368.
  28. Maida, J. (2022). Global ultra-high performance concrete market - Increasing demand for RPC to boost growth. Business Wire, a Berkshire Hathaway Company - Technavio Research.
  29. Mishra, O., &amp; Singh, S. P. (2019). An overview of microstructural and material properties of ultra-high performance concrete. <em>Journal of Sustainable Cement-Based Materials</em>, 8, 97–143. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1080/21650373.2018.1564398" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1080/21650373.2018.1564398</a>">https://doi.org/10.1080/21650373.2018.1564398</ext-link>
  30. Mueller, U., Williams Portal, N., Chozas, V., Flansbjer, M., Larazza, I., da Silva, N., &amp; Malaga, K. (2016). Reactive powder concrete for façade elements – A sustainable approach. <em>Journal of Facade Design and Engineering</em>, 4, 53–66. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.3233/fde-160051" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.3233/fde-160051</a>">https://doi.org/10.3233/fde-160051</ext-link>
  31. National Precast Concrete Association. (2013). Ultra High-Performance Concrete (UHPC) - Guide to manufacturing architectural precast elements. Retrieved from <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="http://precast.org/wp-content/uploads/2015/02/UHPCWhite-Paper.pdf">http://precast.org/wp-content/uploads/2015/02/UHPCWhite-Paper.pdf</ext-link>
  32. National Research Council (CNR). (2018). <em>Guidelines for the design and construction of externally bonded FRP systems for strengthening existing structures (CNR-DT-215/2018)</em>. Rome, Italy: Italian National Research Council.
  33. Nematollahi, B. (2012). A review on ultra-high performance “ductile” concrete (UHPdC) technology. <em>International Journal of Civil Structural Engineering</em>, 2, 1–6. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.6088/ijcser.00202030026" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.6088/ijcser.00202030026</a>">https://doi.org/10.6088/ijcser.00202030026</ext-link>
  34. Park, S., Lee, N., An, G. H., Koh, K. T., &amp; Ryu, G. S. (2021). Modeling the effect of alternative cementitious binders in ultra-high-performance concrete. <em>Materials (Basel)</em>, 14. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.3390/ma14237333" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.3390/ma14237333</a>">https://doi.org/10.3390/ma14237333</ext-link>
  35. Schmidt, M., &amp; Fehling, E. (2005). Ultra-high-performance concrete: Research, development, and application in Europe. In <em>American Concrete Institute</em>, ACI Spec. Publ. (pp. 51–77).
  36. Shi, C., Wu, Z., Xiao, J., Wang, D., Huang, Z., &amp; Fang, Z. (2015). A review on ultra-high-performance concrete: Part I. Raw materials and mixture design. <em>Construction and Building Materials</em>, 101, 741–751. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1016/j.conbuildmat.2015.10.088" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.conbuildmat.2015.10.088</a>">https://doi.org/10.1016/j.conbuildmat.2015.10.088</ext-link>
  37. Tanaka, Y., Maekawa, K., Kameyama, Y., Ohtake, A., Musha, H., &amp; Watanabe, N. (2013). The innovation and application of UHPFRC bridges in Japan. In <em>Design and Build with UHPFRC</em> (pp. 149–188). <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1002/9781118557839.ch12" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1002/9781118557839.ch12</a>">https://doi.org/10.1002/9781118557839.ch12</ext-link>
  38. Wang, D., Shi, C., Wu, Z., Xiao, J., Huang, Z., &amp; Fang, Z. (2015). A review on ultra-high-performance concrete: Part II. Hydration, microstructure and properties. <em>Construction and Building Materials</em>, 96, 368–377. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1016/j.conbuildmat.2015.08.095" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.conbuildmat.2015.08.095</a>">https://doi.org/10.1016/j.conbuildmat.2015.08.095</ext-link>
  39. Wille, K., &amp; Naaman, A. E. (2012). Pullout behavior of high-strength steel fibers embedded in ultra-high-performance concrete. <em>ACI Materials Journal</em>. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.14359/51683923" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.14359/51683923</a>">https://doi.org/10.14359/51683923</ext-link>
  40. Wu, C., &amp; Li, J. (2018). Development of ultra-high-performance concrete against blasts: From materials to structures.
  41. Xue, J., Briseghella, B., Huang, F., Nuti, C., Tabatabai, H., &amp; Chen, B. (2020). Review of ultra-high performance concrete and its application in bridge engineering. <em>Construction and Building Materials</em>, 260. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1016/j.conbuildmat.2020.119844" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.conbuildmat.2020.119844</a>">https://doi.org/10.1016/j.conbuildmat.2020.119844</ext-link>
  42. Yazici, H., Yardimci, M. Y., Yiǧiter, H., Aydin, S., &amp; Türkel, S. (2010). Mechanical properties of reactive powder concrete containing high volumes of ground granulated blast furnace slag. <em>Cement and Concrete Composites</em>, 32, 639–648. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1016/j.cemconcomp.2010.07.005" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.cemconcomp.2010.07.005</a>">https://doi.org/10.1016/j.cemconcomp.2010.07.005</ext-link>
  43. Yoo, D. Y., Kang, S. T., &amp; Yoon, Y. S. (2016). Enhancing the flexural performance of ultra-high performance concrete using long steel fibers. <em>Composites Structures</em>, 147, 220–230. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1016/j.compstruct.2016.03.032" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.compstruct.2016.03.032</a>">https://doi.org/10.1016/j.compstruct.2016.03.032</ext-link>
  44. Zarzour, A. M., Almutairi, A. L., Ahmed, S. N., Hamid, W. K., &amp; Abdalla, H. A. (2025). <em>Repairing of RC beams with openings subjected to torsion using CFRP. Civil and Environmental Engineering</em>, <em>21</em>(1), 617–631. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.2478/cee-2025-0047" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.2478/cee-2025-0047</a>">https://doi.org/10.2478/cee-2025-0047</ext-link>
DOI: https://doi.org/10.2478/cee-2026-0015 | Journal eISSN: 2199-6512 | Journal ISSN: 1336-5835
Language: English
Submitted on: Jun 24, 2025
Accepted on: Jul 16, 2025
Published on: Oct 8, 2025
Published by: Sciendo
In partnership with: Paradigm Publishing Services
Publication frequency: 2 times per year

© 2025 Ali Khalid Ahmed, Mustafa Hameed Al-Allaf, published by Sciendo
This work is licensed under the Creative Commons Attribution 4.0 License.

AHEAD OF PRINT