References
- D. Zhang, Q. Yang, Y. Wang, and J. Li. (2023). Effects of Nano-SiO2 additives on carbon fiber reinforced fly ash–slag geopolymer composites performance: Workability, mechanical properties, and microstructure, Nano Technol. Rev. vol. 12, Art. no. 2023015. https://doi.org/10.1515/ntrev-2023-0157.
- Tran, D. V. P., Allawi, A., Albayati, A., Nguyen Cao, T., El-Zohairy, A., and Nguyen, Y. T. H. (2021). Recycled concrete aggregate for medium-quality structural concrete. Materials, 14(16), 4612. https://doi.org/10.3390/ma14164612
- LAFTA G.M. and ALI. A.S. (2024). Effects of Leca Content on The Behavior of Steel Fiber-Reinforced Geopolymer Concrete at High Temperature. Civil and Environmental Engineering Journal Vol. 20, Issue 2, 962-977, http://dx.doi.org/10.2478/cee-2024-0070.
- A. B. Moradikhou and A. Esparham. (2021). Water absorption, density, mechanical strengths, and high-temperature resistance of metakaolin-based geopolymer concrete reinforced with hybrid polyolefin and simple polypropylene fibers. Adv. Res. Civil Eng., vol. 3, no. 2, pp. 1–15. ISSN:2645-7229.
- M. S. Amouri and M. F. Nada. (2022). The mechanical properties of fly ash and slag geopolymer mortar with micro steel fibers. Eng. Technol. Appl. Sci. Res., vol. 12, no. 2, pp. 8463–8466.
- A. Mahmood, M. T. Noman, M. Pechočiaková, N. Amor, M. Petrů, M. Abdelkader, J. Militký, S. Sozcu, and S. Z. Ul Hassan. (2021). Geopolymers and fiber-reinforced concrete composites in civil engineering. Polymers Journal. Vol. 13. Issue 13. https://doi.org/10.3390/polym13132099
- M d. Toriqule A. (2021). Geo-polymer Concrete with recycled wastes: Concrete for Green Future, https://thegreenpagebd.com/concrete-for-greenfuture-2/.
- Adewumi JB, Branko Š, Suvash CP, and Vivi A. (2018). Engineering Properties of Concrete with Waste Recycled Plastic: A review. Sustainability, vol. 10, pp.1-26, page no.3875. https://doi.org/10.3390/su10113875.
- Hsino M., Jankowiak T. and, Jasiczak J. (2022). Experimental and Numerical Analysis of the Concrete Maturation Process with Additives of Phase Change Materials. Materials, vol. 15, issue no.13, page no. 4687. https://doi.org/10.3390/ma15134687 .
- HILALA A., NADER A. S. and, KURJI B.M. (2024). Producing Sustainable Lightweight Geopolymer Concrete Using Waste. Materials. Civil and Environmental Engineering Vol. 20, Issue 2, pp.1120-1128. DOI: 10.2478/cee-2024-0081
- L. Qin, J. Yan, M. Zhou, H. Liu, A. Wang, W. Zhang, P. Duan, and Z. Zhang. (2023). Mechanical properties and durability of fiber reinforced geopolymer composites: A review on recent progress. Eng. Rep., vol. 5, Art. No. e12708. https://doi.org/10.1002/eng2.12708.
- Q. Frayyeh and A. Swaif. (2018). Mechanical properties of fly ash geopolymer mortar reinforced with carbon fibers. MATEC Web Conf., vol. 162, Art. 02028. https://doi.org/10.1051/matecconf/201816202028.
- K. Korniejenko, B. Figiela, K. Miernik, C. Ziejewska, J. Marczyk, M. Hebda, A. Cheng, and W. T. Lin. (2021). Mechanical and fracture properties of long fiber reinforced geopolymer composites. Materials, vol. 14, Art. no. 5183. https://doi.org/10.3390/ma14185183.
- K. Korniejenk, M. Łach, and J. Mikuła. (2021). The influence of short coir, glass, and carbon fibers on the properties of composites with geopolymer matrix. Materials, vol. 14, Art. no. 4599., https://doi.org/10.3390/ma14164599.
- M. A. M. Langaroudi, M. M. Moein, A. Saradar, and M. Karakouzian. (2025). Investigation of the mechanical properties and durability of fiber-reinforced geopolymer mortars containing metakaolin and glass powder. Infrastructures, vol. 10, Art. no. 25. https://doi.org/10.3390/infrastructures10020025.
- ASTM International (2022). ASTM C618-22. Standard Specification for Coal Fly Ash and Raw or Calcined Natural Pozzolan for Use in Concrete, American Society for Testing and Materials, West Conshohocken, PA, USA.
- Central Organization of Iraq. (2021). Aggregate from natural sources for concrete and construction: As per Iraqi specifications No. 45. Baghdad, Iraq: Central Organization of Iraq.
- Alghanim Specialities Co. W.L. (n.d.). KUT PAST SP 400 [Product datasheet]. Amghara Industrial Area, Safat, Kuwait.sales@spec-kw.com
- ASTM International (2017). ASTM C494/C494M-17: Standard specification for chemical admixtures for concrete. West Conshohocken, PA: ASTM International.
- MegaAdd MS(D) Data Sheet, Conmix Specialties Co., Sharjah, UAE. [Online]. Available: https://www.conmix.com (accessed Jun. 9, 2025).
- ASTM International (2020). ASTM C1240. Standard specification for silica fume used in cementitious mixtures, American Society for Testing and Materials. West Conshohocken, PA, USA.
- G. Xue and M. Cao. (2017). Effect of modified rubber particles mixing amount on properties of cement mortar. Adv. Civil Eng., vol. 5, pp. 1–6. https://doi.org/10.1155/2017/8643839.
- N. Segre, P. J. Monteiro, and G. Sposito. (2002). Surface characterization of recycled tire rubber to be used in the cement paste matrix. J. Colloid Interface Sci., vol. 248, no. 2, pp. 521–523. https://doi.org/10.1006/jcis.2002.8217.
- Davidovits J. (1991). Geopolymers: Inorganic polymeric new materials. Journal of Thermal Analysis and Calorimetry, 37(8), 1633–1656. https://doi.org/10.1007/BF01912193.
- Hardjito, D., and Rangan, B. V. (2005). Development and properties of low-calcium fly ash-based geopolymer concrete (Research Report GC 1). Curtin University of Technology, Perth, Australia. https://researchrepository.curtin.edu.au.
- R. Siddique and E. Kadri. (2012). Properties of high-volume fly ash concrete reinforced with natural fibers. Leonardo J. Sci., vol. 20, no. 21, pp. 83–98.
- N. F. Al-Obeidy and W. I. Khalil. (2023). Studying the possibility of producing paving flags from geopolymer concrete containing local wastes. Eng. Technol. J., vol. 41, no. 11, pp. 1325–1336. http://doi.org/10.30684/etj.2023.141321.1494.
- ASTM International (2015). ASTM C29M-15. Standard test method for bulk density (unit weight) and voids in aggregate. American Society for Testing and Materials. West Conshohocken. PA, USA.
- ASTM International (2015). ASTM C127-15. Standard test method for density, relative density (specific gravity), and absorption of coarse aggregate, American Society for Testing and Materials. West Conshohocken, PA, USA.
- Sika Warp-230 C/45, “Woven carbon fiber fabric for structure strengthening,” Product Data Sheet, Sika, Turkey, pp. 1–5. [Online]. Available: https://www.sika.com.tr (accessed Jun. 9, 2025).
- M. Hadi, N. Farhan, and M. Sheikh. (2017). Design of geopolymer concrete with GGBFS at ambient curing conditions using Taguchi method. Constr. Build. Mater., vol. 140, pp. 424–431. https://doi.org/10.1016/j.conbuildmat.2017.02.131.
- A. Mehta, R. Siddique, B. Singh, S. Aggoun, G. Łagód, and D. Barnat-Hunek. (2017). Influence of various parameters on strength and absorption properties of fly ash-based geopolymer concrete designed by Taguchi method. Constr. Build. Mater., vol. 150, pp. 817–824. https://doi.org/10.1016/j.conbuildmat.2017.06.066.
- W. I. Khalil, Q. J. Frayyeh, and M. F. Ahmed. (2020). Characteristics of eco-friendly metakaolin-based geopolymer concrete pavement bricks, Eng. Technol. J., vol. 38, no. 11A, pp. 1706–1716. https://dio.org/10.30684i11A.1699.
- BSI, BS 1881-116: Method for Determination of Compressive Strength of Concrete Cubes, British Standards Institution.
- ASTM International (2015). ASTM C496. Standard Test Method for Splitting Tensile Strength of Cylindrical Concrete Specimens. ASTM International. West Conshohocken, PA, USA.
- ASTM International (2015). ASTM C469. Standard Test Method for Static Modulus of Elasticity and Poisson’s Ratio of Concrete in Compression, ASTM International, West Conshohocken, PA, USA.
- A. O. Atahan and A. Ö. Yücel. (2012). Crumb rubber in concrete: Static and dynamic evaluation. Constr. Build. Mater., vol. 36, pp. 617–622. https://doi.org/10.1016/j.conbuildmat.2012.04.068.
- W. I. Khalil, Q. J. Frayyeh, and M. F. Ahmed. Mar. (2020). Sustainable metakaolin-based geopolymer concrete with waste plastic aggregate. in Proc. 4th Int. Sustainable Buildings Symp. (ISBS).
- N. A. J. Chabuk. (2022). Utilization of Rubber and Plastic Waste as a Partial Replacement of Aggregate for Improved Sound Insulation. Graduation Project, Architecture Dept., pp. 34.
- Q. J. Frayyeh and H. K. Mushtaq. (2021). Effect of adding polypropylene fibers in metakaolin-based geopolymer concrete. Eng. and Technol. J., vol. 39, no. 12, pp. 1814–1820. Doi: 10.30684/etj.v39i12.2224.
- V. Ružek, A. M. Dostayeva, J. Walter, T. Grab, and K. Korniejenko. (2023). Carbon fiber-reinforced geopolymer composites: A review. Fibers, vol. 11, no. 2. Doi: 10.3390/fib11020017.
- F. Bowen and J. Liu. (2022). “Durability of repair metakaolin geopolymeric cement under different factors,” Processes, vol. 10, Doi: 10.3390/pr10091818.
- B. O. Adeleke, J. M. Kinuthia, J. Oti, D. Pirrie, and M. Power. (2024). Mechanical and microstructural investigation of geopolymer concrete incorporating recycled waste plastic aggregate. Materials, vol. 17, no. 1340. https://doi.org/10.3390/.
- Y. G. P. Giri, B. S. Mohammed, M. S. Liew, N. A. W. A. Zawawi, I. Abdulkadir, P. Singh, and G. Ravindran. (2023). Mechanical and microstructural properties of rubberized geopolymer concrete: Modeling and optimization. Buildings, vol. 13, Art. no. 2021. https://doi.org/10.3390/buildings13082021.
- A. B. Moradikhou and A. Esparham. (2021). Water absorption, density, mechanical strengths, and high-temperature resistance of metakaolin-based geopolymer concrete reinforced with hybrid polyolefin and simple polypropylene fibers. Adv. Res. Civil Eng., vol. 3, no. 2, pp. 1–15. ISSN: 2645-7229.
- B. İsıkdağ and H. A. Mutlu. (2024). Durability of non-heat-cured geopolymer mortars containing metakaolin and ground granulated blast furnace slag. Minerals, vol. 14, no. 8, p. 776. https://doi.org/10.3390/min14080776.
- R. Siddique and M. I. Khan. (2011). Supplementary Cementing Materials, Berlin/Heidelberg: Springer-Verlag, Ch. Metakaolin, pp. 175–230.
- R. Si, Q. Dai, S. Guo, and J. Wang. (2020). Mechanical property, nanopore structure and drying shrinkage of metakaolin-based geopolymer with waste glass powder. J. Clean. Prod., vol. 242, Art. no. 118502, pp. 1–12, https://doi.org/10.1016/j.jclepro.2019.118502.
- M. F. Ahmed, W. I. Khalil, and Q. J. Frayyeh. (2022). Effect of waste clay brick on the modulus of elasticity, drying shrinkage and microstructure of metakaolin-based geopolymer concrete. Arab. J. Sci. Eng. https://doi.org/10.1007/s13369-022-06611-0.
- N. Saikia and J. de Brito. (2014). Mechanical properties and abrasion behavior of concrete containing shredded PET bottle waste as a partial substitution of natural aggregate. Constr. Build. Mater., vol. 52, pp. 236–244. https://doi.org/10.1016/j.conbuildmat.2013.11.049.
- O. Mohamed and H. Zuaiter. (2024). Fresh properties, strength, and durability of fiber-reinforced geopolymer and conventional concrete: A review. Polymers, vol. 16, Art. no. 141. https://doi.org/10.3390/polym16010141.
- T. Wang, X. Fan, C. Gao, C. Qu, J. Liu, and G. Yu. (2023). The influence of fiber on the mechanical properties of geopolymer concrete: A review. Polymers, vol. 15, no. 4, p. 827. https://doi.org/10.3390/polym15040827.
- K. Zada, J. M. A. Johari, and R. Demirboga. (2021). Impact of fiber reinforcements on properties of geopolymer composites: A review. J. Build. Eng., vol. 44, Art. no. 102628. https://doi.org/10.1016/j.jobe.2021.102628.
- Xu, Z., Huang, Z., Liu, C., Deng, X., Hui, D., and Deng, S. (2022). Research Progress on the Mechanical Properties of Geopolymer Recycled Aggregate Concrete. Results in Engineering, 15, 100550. https://doi.org/10.1515/rams-2021-0021.
- Davidovits J. (2020). Geopolymer chemistry and applications (5th ed.). Saint-Quentin, France: Institute Geopolymer.
