Have a personal or library account? Click to login
Effect of Waste Jute Fibers on the Mechanical Properties of Stone Matrix Asphalt Mixtures Cover

Effect of Waste Jute Fibers on the Mechanical Properties of Stone Matrix Asphalt Mixtures

Open Access
|Sep 2025

References

  1. AASHTO, M. (2021). 325-08. Standard Specification for Stone Matrix Asphalt. American Association of State Highway and Transportation Officials. Washington.
  2. AASHTO, T. (2018). 305-14. Determination of Draindown Characteristics in Uncompacted Asphalt Mixtures. AASHTO, Washington, DC.
  3. Albayati, A. H., & Al-Mosawe, H. (2023). Influence of Different Factors on Permanent Deformation of Hot Asphalt Concrete Mixtures. Civil and Environmental Engineering, 19(2), 555–567. https://doi.org/10.2478/cee-2023-0050
  4. Albayati, N., & Ismael, M. Q. (2023). Effect of carbon fibers (length, dosage) on the Marshall and volumetric properties of HMA mixtures. Aibi, Revista de Investigacion Administracion e Ingenierias, 11(3), 71–80. https://doi.org/10.15649/2346030X.3243
  5. Al-Bayati, N. K., & Ismael, M. Q. (2023). Effect of differently treated recycled concrete aggregates on Marshall properties and cost-benefit of asphalt mixtures. Sustainable Engineering and Innovation, 5(2), 127–140.
  6. Albayati, N., & Qadir-Ismael, M. (2024). Rutting performance of asphalt mixtures containing treated RCA and reinforced by carbon fibers. AiBi Revista de Investigación, Administración e Ingeniería, 12(1), 18–28.
  7. Ali, B. S., & Al-Tameemi, A. F. (2025). Evaluation of the Performance Characteristics of Synthetic Fiber-Modified Hot Mix Asphalt. Civil and Environmental Engineering, 0(0). https://doi.org/10.2478/cee-2025-0066
  8. Al-Saad, A. A., & Ismael, M. Q. (2022). Rutting prediction of hot mix asphalt mixtures reinforced by ceramic fibers. Journal of Applied Engineering Science, 20(4), 1345–1354.
  9. AlSaadi, I., Tayh, S. A., Jasim, A. F., & Yousif, R. (2023). The use of natural fibers in stone mastic asphalt mixtures: a review of the literature. Archives of Civil Engineering, 69(3), 347–370. https://doi.org/10.24425/ace.2023.146085
  10. ASTM. (2017). Standard test method for determination of draindown characteristics in uncompacted asphalt mixtures. In ASTM D6390. ASTM International West Conshohocken, PA, USA.
  11. ASTM, A. (2015). D6927-15 standard test method for Marshall stability and flow of asphalt mixtures. ASTM International: West Conshohocken, PA, USA.
  12. ASTM, D. (2012). Standard test method for indirect tensile (IDT) strength of bituminous mixtures. ASTM D6931, West Conshohocken.
  13. ASTM, D. (2017). 1074-17” Standard Test Method for Compressive Strength of Asphalt Mixtures. ASTM, USA.
  14. Błazejowski, K. (2016). Stone matrix asphalt: Theory and practice. In Stone Matrix Asphalt: Theory and Practice.
  15. Chin, C., & Charoentham, N. (2021). Effect of Coconut Fiber Length and Content on Properties of Stone Mastic Asphalt. Suranaree Journal of Science and Technology, 28(3), 1–7.
  16. Devulapalli, L., Sarang, G., & Kothandaraman, S. (2022). Characteristics of aggregate gradation, drain down and stabilizing agents in stone matrix asphalt mixtures: A state of art review. Journal of Traffic and Transportation Engineering (English Edition), 9(2), 167–179. https://doi.org/10.1016/j.jtte.2021.10.007
  17. Faruk, O., Bledzki, A. K., Fink, H. P., & Sain, M. (2012). Biocomposites reinforced with natural fibers: 2000-2010. Progress in Polymer Science, 37(11), 1552–1596. https://doi.org/10.1016/j.progpolymsci.2012.04.003
  18. Ferreira da Costa, L., Lucena, L. C. de F. L., Lucena, A. E. de F. L., & Grangeiro de Barros, A. (2020). Use of Banana Fibers in SMA Mixtures. Journal of Materials in Civil Engineering, 32(1). https://doi.org/10.1061/(asce)mt.1943-5533.0002994
  19. Gallo, P., Belhaj, M., & Valentin, J. (2024). Laboratory Study of Asphalt Concrete for Base Course with Reclaimed Asphalt, Recycling Agents, and Jute Fibres. Applied Sciences (Switzerland), 14(1). https://doi.org/10.3390/app14010239
  20. Gallo, P., Valentin, J., & Mondschein, P. (2021). Asphalt Concrete for Binder Courses with Different Jute Fibre Content. IOP Conference Series: Materials Science and Engineering, 1203(3), 032041. https://doi.org/10.1088/1757-899x/1203/3/032041
  21. Gani, M. N., & Ali, M. S. (2018). Md. Mahbubul Islam. Nutritional Requirements of Newly Released Tossa Jute MG-1. American Journal of Food, Nutrition and Health, 3(2), 31–34.
  22. Hassan, M., Rashid, M., Danish, A., & Ahmed, A. (2021). The effect of using jute fiber on deformation resistance of asphalt concrete. Proceedings of the CSCE, 21.
  23. Henao-Pereira, J. P., Tovar-León, A. E., Castillo-Landinez, S. P., & Caicedo-Rodriguez, P. E. (2020). Traffic accidents from the perspective of data mining A review of the literature. Aibi, Revista de Investigacion Administracion e Ingenierias, 8(2), 133–141. https://doi.org/10.15649/2346030X.743
  24. Hussein, F. K., Ismael, M. Q., & Huseien, G. F. (2023). Rock Wool Fiber-Reinforced and Recycled Concrete Aggregate-Imbued Hot Asphalt Mixtures: Design and Moisture Susceptibility Evaluation. Journal of Composites Science, 7(10). https://doi.org/10.3390/jcs7100428
  25. Islam, M., Bjri, A., Islam, M. M., & Saheb, A. (2018). Industrial Research Advances of Jute in Bangladesh. International Journal of Agricultural and Biosystems Engineering, 3(1), 1–9.
  26. Ismael, M., Fattah, M. Y., & Jasim, A. F. (2022). Permanent Deformation Characterization of Stone Matrix Asphalt Reinforced by Different Types of Fibers. Journal of Engineering, 28(2), 99–116. https://doi.org/10.31026/j.eng.2022.02.07
  27. Ismael, M. Q., & Al-Taher, H. M. (2015). Reinforcement of Asphalt Concrete by Polyester Fibers to Improve Flexural Bending Fatigue Resistance. Journal of Engineering, 21(1), 115–130. https://doi.org/10.31026/j.eng.2015.01.08
  28. Ismael, M. Q., Fattah, M. Y., & Jasim, A. F. (2021). Improving the rutting resistance of asphalt pavement modified with the carbon nanotubes additive. Ain Shams Engineering Journal, 12(4), 3619–3627. https://doi.org/10.1016/j.asej.2021.02.038
  29. Ismael, S. A. D. M., & Ismael, M. Q. (2019). Moisture Susceptibility of Asphalt Concrete Pavement Modified by Nanoclay Additive. Civil Engineering Journal (Iran), 5(12), 2535–2553. https://doi.org/10.28991/cej-2019-03091431
  30. Jain, S., Singh, H., & Chopra, T. (2020). Laboratory investigations and performance evaluation of stone matrix asphalt as a wearing course using three different fibers. International Journal of Applied Science and Engineering, 17(4), 411–418. https://doi.org/10.6703/IJASE.202012_17(4).411
  31. Jasim, S. A., & Ismael, M. Q. (2021). Marshall performance and volumetric properties of styrene-butadiene-styrene modified asphalt mixtures. Civil Engineering Journal, 7(6), 1050–1059.
  32. Kar, D., Giri, J. P., & Panda, M. (2019). Performance Evaluation of Bituminous Paving Mixes Containing Sisal Fiber as an Additive. Transportation Infrastructure Geotechnology, 6(3), 189–206. https://doi.org/10.1007/s40515-019-00079-6
  33. Kumar, N. L. N. K., & Ravitheja, A. (2019). Characteristics of stone matrix asphalt by using natural fibers as additives. Materials Today: Proceedings, 19, 397–402.
  34. Mahrez, A., & Karim, M. R. (2010). Fatigue characteristics of stone mastic asphalt mix reinforced with fiber glass. International Journal of Physical Sciences, 5(12), 1840–1847.
  35. Mohammed, S. F., & Ismael, M. Q. (2021). Effect of polypropylene fibers on moisture susceptibility of warm mix asphalt. Civ. Eng. J, 7(6), 988–997.
  36. Moore, D. S., Notz, W., Fligner, M. A., & Linder, R. S. (2013). The Basic Practice of Statistics: Instructor’s Edition. WH Freeman and Company.
  37. Naveen Kumar R, & V Sunitha. (2016). Experimental Investigation of Stone Mastic Asphalt with Sisal Fiber. International Journal of Engineering Research And, V5(11), 546–550. https://doi.org/10.17577/ijertv5is110309
  38. Omar, H. A., Yusoff, N. I. M., Mubaraki, M., & Ceylan, H. (2020). Effects of moisture damage on asphalt mixtures. Journal of Traffic and Transportation Engineering (English Edition), 7(5), 600–628. https://doi.org/10.1016/j.jtte.2020.07.001
  39. Panda, M., Suchismita, A., & Giri, J. (2013). Utilization of Ripe Coconut Fiber in Stone Matrix Asphalt Mixes. International Journal of Transportation Science and Technology, 2(4), 289–302. https://doi.org/10.1260/2046-0430.2.4.289
  40. Rahman, M. T., Mohajerani, A., & Giustozzi, F. (2020). Recycling of waste materials for asphalt concrete and bitumen: A review. Materials, 13(7). https://doi.org/10.3390/ma13071495
  41. Ramalingam, S., Murugasan, R., & Nagabhushana, M. N. (2017). Laboratory performance evaluation of environmentally sustainable sisal fibre reinforced bituminous mixes. Construction and Building Materials, 148, 22–29. https://doi.org/10.1016/j.conbuildmat.2017.05.006
  42. Raof, H. B., & Ismael, M. Q. (2019). Effect of polyphosphoric acid on rutting resistance of asphalt concrete mixture. Civil Engineering Journal, 5(9), 1929–1940.
  43. Rozo-Verjel, E. J., & Pérez-Fernández, B. J. (2021). Decalogue of road safety for the reduction of risks in road users, motorcycle drivers, belonging to a Colombian company. Aibi, Revista de Investigacion Administracion e Ingenierias, 9(2), 40–52. https://doi.org/10.15649/2346030X.779
  44. SCRB, R. E. (2003). Standard Specifications for Roads and Bridges, Section R/9, Hot-Mix Asphaltic Concrete Pavement. The State Corporation for Roads and Bridges, Ministry of Housing and Construction.
  45. Shanbara, H. K., Ruddock, F., & Atherton, W. (2018). A laboratory study of high-performance cold mix asphalt mixtures reinforced with natural and synthetic fibres. Construction and Building Materials, 172, 166–175.
  46. Sharma, V., & Goyal, S. (2006). Comparative study of performance of natural fibres and crumb rubber modified stone matrix asphalt mixtures. Canadian Journal of Civil Engineering, 33(2), 134–139. https://doi.org/10.1139/l05-096
  47. Shiva Kumar, G., & Ravi Shankar, A. U. (2020). Evaluation of workability and mechanical properties of stone matrix asphalt mixtures made with and without stabilizing additives. Transportation Infrastructure Geotechnology, 7, 191–204.
  48. Singh, H., Singh, J. I. P., Singh, S., Dhawan, V., & Tiwari, S. K. (2018). A Brief Review of Jute Fibre and Its Composites. Materials Today: Proceedings, 5(14), 28427–28437. https://doi.org/10.1016/j.matpr.2018.10.129
  49. Singh, S. K., & Singh, V. L. (2024). Road Traffic Crashes in Up’s Metropolitan Cities: A Public Health Scourge. Romanian Journal of Transport Infrastructure, 13(1), 1–12. https://doi.org/10.2478/rjti-2024-0012
  50. Singh, S., Khairandish, M. I., Razahi, M. M., Kumar, R., Chohan, J. S., Tiwary, A., Sharma, S., Li, C., Ilyas, R. A., Asyraf, M. R. M., & Zakaria, S. Z. S. (2022). Preference Index of Sustainable Natural Fibers in Stone Matrix Asphalt Mixture Using Waste Marble. Materials, 15(8), 1–17. https://doi.org/10.3390/ma15082729
  51. Tabachnick, B. G., & Fidell, L. S. (2014). Statistics, Using Multivariate. International of Sixth Ed.
  52. Tanzadeh, R., Tanzadeh, J., & Tahami, S. A. (2019). Experimental study on the effect of basalt and glass fibers on behavior of open-graded friction course asphalt modified with nano-silica. Construction and Building Materials, 212, 467–475.
  53. Tarannum Jarin, T., Fayshal, A., Siddique, I. M., & Siddique, A. A. (2024). Investigating the Behavior, Properties, and Environmental Implications of Jute and Plastic Products for a Sustainable Future. Journal of Scientific and Engineering Research, 11(3), 16–28.
  54. Ugla, S. K., & Ismael, M. Q. (2023). Evaluating the moisture susceptibility of asphalt mixtures containing RCA and modified by waste alumina. Civil Engineering Journal, 9, 250–262.
DOI: https://doi.org/10.2478/cee-2026-0004 | Journal eISSN: 2199-6512 | Journal ISSN: 1336-5835
Language: English
Submitted on: Jun 13, 2025
Accepted on: Jul 9, 2025
Published on: Sep 5, 2025
Published by: University of Žilina
In partnership with: Paradigm Publishing Services
Publication frequency: 2 issues per year

© 2025 Aeshah A. Ahmed, Mohammed Q. Ismael, published by University of Žilina
This work is licensed under the Creative Commons Attribution 4.0 License.

AHEAD OF PRINT