Have a personal or library account? Click to login
Study of Adhesion at the Polymer-Silicate Composite Interface Under the Infulence of Physico-Mechanical Factors Cover

Study of Adhesion at the Polymer-Silicate Composite Interface Under the Infulence of Physico-Mechanical Factors

Open Access
|Aug 2025

References

  1. SINGH, H., AMBEKAR, R. S., DAS, D., DANAM, V. A., KATIYAR, N. K., KANTI DAS, B., TIWARY, C. S., & BHATTACHARYA, J. (2024). Enhancing structural resilience by using 3D printed complex polymer reinforcement for high damage tolerant structures. Construction and Building Materials, 425, 136085. https://doi.org/10.1016/j.conbuildmat.2024.136085.
  2. HARRIS, M., RAZA, A., POTGIETER, J., IMDAD, A., RIMAŠAUSKIENĖ, R., & ARIF, K. M. (2023). 3D printed biodegradable polymer reinforced concrete with high structural stability. Structures, 51, 1609–1621. https://doi.org/10.1016/j.istruc.2023.03.156.
  3. SALAZAR, B., AGHDASI, P., WILLIAMS, I. D., OSTERTAG, C. P., & TAYLOR, H. K. (2020). Polymer lattice-reinforcement for enhancing ductility of concrete. Materials & Design, 196, 109184. https://doi.org/10.1016/j.matdes.2020.109184.
  4. SUCHARDA, O., MARCALIKOVA, Z., & GANDEL, R. (2022). Microstructure, Shrinkage, and Mechanical Properties of Concrete with Fibers and Experiments of Reinforced Concrete Beams without Shear Reinforcement. Materials, 15 (16), 5707. https://doi.org/10.3390/ma15165707.
  5. SUCHARDA, O., KONECNY, P., KUBOSEK, J., PONIKIEWSKI, T., & DONE, P. (2015). Finite Element Modelling and Identification of the Material Properties of Fibre Concrete. Procedia Engineering, 109, 234–239, https://doi.org/10.1016/j.proeng.2015.06.222.
  6. MATECKOVA, P., BILEK, V., & SUCHARDA, O. (2021). Comparative Study of High-Performance Concrete Characteristics and Loading Test of Pretensioned Experimental Beams. Crystals, 11, (4), 427). https://doi.org/10.3390/cryst11040427.
  7. GANDEL, R., JERABEK, J., & MARCALIKOVA, Z. (2023). Reinforced Concrete Beams Without Shear Reinforcement Using Fiber Reinforced Concrete and Alkali-Activated Material. Civil and Environmental Engineering, 19 (1), 348–356. https://doi.org/10.2478/cee-2023-0031.
  8. MARCALIKOVA, Z., JERABEK, J., GANDEL, R., GABOR, R., BILEK, V., & SUCHARDA, O. (2024). Mechanical Properties, Workability, and Experiments of Reinforced Composite Beams with Alternative Binder and Aggregate. Buildings, 14(7), 2142. https://doi.org/10.3390/buildings14072142.
  9. PEKNIKOVA, A., JERABEK, J., GANDEL, R., GABOR, R., BILEK, V., & SUCHARDA, O. (2025). Physical–Mechanical Behavior of High-Performance Concrete and Ordinary Concrete with Portland Cement Mixtures After Exposure to Selected Durability Tests Including High Thermal Stress. Buildings, 15 (7), 1029, https://doi.org/10.3390/buildings15071029.
  10. SCHNEIDER, M., ROMER, M., TSCHUDIN, M., & BOLIO, H. (2011). Sustainable cement production—present and future. Cement and Concrete Research, 41 (7), 642–650. https://doi.org/10.1016/j.cemconres.2011.03.019.
  11. HUNTZINGER, D. N., & EATMON, T. D. (2009). A life-cycle assessment of Portland cement manufacturing: comparing the traditional process with alternative technologies. Journal of Cleaner Production, 17 (7), 668–675. https://doi.org/10.1016/j.jclepro.2008.04.007.
  12. TURNER, L. K., & COLLINS, F. G. (2013). Carbon dioxide equivalent (CO2-e) emissions: A comparison between geopolymer and OPC cement concrete. Construction and Building Materials, 43, 125–130. https://doi.org/10.1016/j.conbuildmat.2013.01.023.
  13. JUENGER, M. C. G., WINNEFELD, F., PROVIS, J. L., & IDEKER, J. H. (2011). Advances in alternative cementitious binders. Cement and Concrete Research, 41 (12), 1232–1243. https://doi.org/10.1016/j.cemconres.2010.11.012.
  14. PROVIS, J. L. (2018). Alkali-activated materials. Cement and Concrete Research, 114, 40–48. https://doi.org/10.1016/j.cemconres.2017.02.009.
  15. SHI, C., JIMÉNEZ, A. F., & PALOMO, A. (2011). New cements for the 21st century: The pursuit of an alternative to Portland cement. Cement and Concrete Research, 41 (7), 750–763. https://doi.org/10.1016/j.cemconres.2011.03.016.
  16. KOPIIKA, N., BLIKHARSKYY, Y., SELEJDAK, J., KHMIL, R., & BLIKHARSKYY, Z. (2025). Reliability-based analysis and residual life forecasting for corrosion-affected RC structures. Structures, 76, 108965. https://doi.org/10.1016/j.istruc.2025.108965
  17. KRAMARCHUK, A., ILNYTSKYY, B., & KOPIIKA, N. (2023). Ensuring the load-bearing capacity of monolithic reinforced concrete slab damaged by cracks in the compressed zone. In Z. Blikharskyy (Ed.), Proceedings of EcoComfort 2022 (Lecture Notes in Civil Engineering, Vol. 290, pp. 185–192). Springer. https://doi.org/10.1007/978-3-031-14141-6_21
  18. KOPIIKA, N., ROBERY, P., NINIC, J., & MITOULIS, S.-A. (2025). Remaining life of ageing RC infrastructure for sustainable development—Deterioration under climate change. Case Studies in Construction Materials, 22, e04757. https://doi.org/10.1016/j.cscm.2025.e04757
  19. ISMAEEL, A. M., et al. (2024). Creating sustainable ultra-high-performance concrete (UHPC) utilizing recycled glass. Civil and Environmental Engineering, 20(2), 1152–1161. https://doi.org/10.2478/cee-2024-0084
  20. ABD, W. F., et al. (2025). Investigation the mechanical and physical characteristics of sustainable refractory concrete. Civil and Environmental Engineering, 0(0). https://doi.org/10.2478/cee-2025-0004
  21. HOANG, D. P., et al. (2025). Effect of short polypropylene fibre content on the mechanical properties of textile-reinforced engineered concrete composite. Civil and Environmental Engineering, 0(0). https://doi.org/10.2478/cee-2025-0039
  22. MAHDI, F., ABBAS, H., & KHAN, A. A. (2010). Strength characteristics of polymer mortar and concrete using different compositions of resins derived from post-consumer PET bottles. Construction and Building Materials, 24 (1), 25–36. https://doi.org/10.1016/j.conbuildmat.2009.08.006.
  23. MAHDI, F., ABBAS, H., & KHAN, A. A. (2013). Flexural, shear and bond strength of polymer concrete utilizing recycled resin obtained from post consumer PET bottles. Construction and Building Materials, 44, 798–811. https://doi.org/10.1016/j.conbuildmat.2013.03.081.
  24. KIM, J., JEONG, D., SON, C., LEE, Y., KIM, E., & MOON, I. (2007). Synthesis and applications of unsaturated polyester resins based on PET waste. Korean Journal of Chemical Engineering, 24 (6), 1076–1083. https://doi.org/10.1007/s11814-007-0124-5.
  25. BARKHAD, M. S., ABU-JDAYIL, B., IQBAL, M. Z., & MOURAD, A.-H. I. (2020). Thermal insulation using biodegradable poly(lactic acid)/date pit composites. Construction and Building Materials, 261, 120533). https://doi.org/10.1016/j.conbuildmat.2020.120533.
  26. NGUYEN-VAN, V., LIU, J., PENG, C., ZHANG, G., NGUYEN-XUAN, H., & TRAN, P. (2022). Dynamic responses of bioinspired plastic-reinforced cementitious beams. Cement and Concrete Composites, 133, 104682. https://doi.org/10.1016/j.cemconcomp.2022.104682.
  27. CHIADIGHIKAOBI, P. C., HASANZADEH, A., HEMATIBAHAR, M., KHARUN, M., MOUSAVI, M. S., STASHEVSKAYA, N. A., & ADEGOKE, M. A. (2024). Evaluation of the mechanical behavior of high-performance concrete (HPC) reinforced with 3D-Printed trusses. Results in Engineering, 22, 102058). https://doi.org/10.1016/j.rineng.2024.102058.
  28. RODRÍGUEZ, C. R., DE MENDONÇA FILHO, F. F., MERCURI, L., GAN, Y., ROSSI, E., ANGLANI, G., ANTONACI, P., SCHLANGEN, E., & ŠAVIJA, B. (2020). Chemo-physico-mechanical properties of the interface zone between bacterial PLA self-healing capsules and cement paste. Cement and Concrete Research, 138, 106228. https://doi.org/10.1016/j.cemconres.2020.106228.
  29. ŠAVIJA, B., FEITEIRA, J., ARAÚJO, M., CHATRABHUTI, S., RAQUEZ, J.-M., VAN TITTELBOOM, K., GRUYAERT, E., DE BELIE, N., & SCHLANGEN, E. (2016). Simulation-Aided Design of Tubular Polymeric Capsules for Self-Healing Concrete. Materials, 10 (1), 10). https://doi.org/10.3390/ma10010010.
  30. PALOS, A., D’SOUZA, N. A., SNIVELY, C. T., & REIDY, R. F., III. (2001). Modification of cement mortar with recycled ABS. Cement and Concrete Research, 31 (7), 1003–1007. https://doi.org/10.1016/s0008-8846(01)00531-2.
  31. SUCHARDA, O., GANDEL, R., CMIEL, P., JERABEK, J., & BILEK, V. (2024). Utilization of High-Performance Concrete Mixtures for Advanced Manufacturing Technologies. Buildings 14 (8), 2269. https://doi.org/10.3390/buildings14082269.
  32. LE, T. T., AUSTIN, S. A., LIM, S., BUSWELL, R. A., GIBB, A. G. F., & THORPE, T. (2012). Mix design and fresh properties for high-performance printing concrete. In Materials and Structures, 45 (8), 1221–1232. https://doi.org/10.1617/s11527-012-9828-z.
  33. LE, T. T., AUSTIN, S. A., LIM, S., BUSWELL, R. A., LAW, R., GIBB, A. G. F., & THORPE, T. (2012). Hardened properties of high-performance printing concrete. Cement and Concrete Research, 42 (3), 558–566. https://doi.org/10.1016/j.cemconres.2011.12.003.
  34. DEL VISO, J. R., CARMONA, J. R., & RUIZ, G. (2008). Shape and size effects on the compressive strength of high-strength concrete. Cement and Concrete Research, 38 (3), 386–395. https://doi.org/10.1016/j.cemconres.2007.09.020.
  35. SIM, J.-I., YANG, K.-H., KIM, H.-Y., & CHOI, B.-J. (2013). Size and shape effects on compressive strength of lightweight concrete. Construction and Building Materials 38, 854–864. https://doi.org/10.1016/j.conbuildmat.2012.09.073.
  36. VU, C.-C., WEISS, J., PLÉ, O., & AMITRANO, D. (2021). The potential impact of size effects on compressive strength for the estimation of the Young’s modulus of concrete. Materials and Structures, 54 (5). https://doi.org/10.1617/s11527-021-01795-7.
  37. QASIM, O. A. (2018). A Review Paper on Specimens Size and Shape Effects on the Concrete Properties. In International Journal of Recent Advances in Science and Technology (Vol. 5, Issue 3). IJPBR. https://doi.org/10.30750/ijarst.533.
  38. TALAAT, A., EMAD, A., TAREK, A., MASBOUBA, M., ESSAM, A., & KOHAIL, M. (2021). Factors affecting the results of concrete compression testing: A review. Ain Shams Engineering Journal 12 (1), 205–221. https://doi.org/10.1016/j.asej.2020.07.015.
  39. PATIL, A. Y., BANAPURMATH, N. R., E. P., S., CHITAWADAGI, M. V., KHAN, T. M. Y., BADRUDDIN, I. A., & KAMANGAR, S. (2020). Multi-Scale Study on Mechanical Property and Strength of New Green Sand (Poly Lactic Acid) as Replacement of Fine Aggregate in Concrete Mix. Symmetry 12 (11), 1823. https://doi.org/10.3390/sym12111823.
  40. MORENO NIETO, D., ALONSO-GARCÍA, M., PARDO-VICENTE, M.-A., & RODRÍGUEZPARADA, L. (2021). Product Design by Additive Manufacturing for Water Environments: Study of Degradation and Absorption Behavior of PLA and PETG. Polymers, 13 (7), 1036. https://doi.org/10.3390/polym13071036.
  41. PLASTUN, N (2024). Adhesion of concrete composite with polymer elements from additive 3D printing technology, Diploma thesis. Ostrava: VSB – Technical University of Ostrava
  42. Experimental dataset. https://doi.org/10.5281/zenodo.14982019.
DOI: https://doi.org/10.2478/cee-2025-0091 | Journal eISSN: 2199-6512 | Journal ISSN: 1336-5835
Language: English
Page range: 1232 - 1245
Published on: Aug 8, 2025
Published by: University of Žilina
In partnership with: Paradigm Publishing Services
Publication frequency: 2 issues per year

© 2025 Nestor Plastun, Radoslav Gandel, Jan Jerabek, Oldrich Sucharda, published by University of Žilina
This work is licensed under the Creative Commons Attribution 4.0 License.