References
- G. LUETZENBURG, M. J. BITTNER, A. CALSAMIGLIA, C. S. RENSCHLER, J. ESTRANY, and R. POEPPL, “Climate and land use change effects on soil erosion in two small agricultural catchment systems Fugnitz – Austria, Can Revull – Spain,” Sci. Total Environ., vol. 704, 2020, doi: 10.1016/j.scitotenv.2019.135389.
- R. MA, F. HU, C. XU, J. LIU, and S. ZHAO, “Response of soil aggregate stability and splash erosion to different breakdown mechanisms along natural vegetation restoration,” Catena, vol. 208, no. 26, 2022, doi: 10.1016/j.catena.2021.105775.
- J. ZHAO, Z. WANG, Y. DONG, Z. YANG, and G. GOVERS, “How soil erosion and runoff are related to land use, topography and annual precipitation: Insights from a meta-analysis of erosion plots in China,” Sci. Total Environ., vol. 802, 2022, doi: 10.1016/j.scitotenv.2021.149665.
- A. BELMANA, M. MELLAS, and V. CAVALEIRO, “Assessment of Coarse Soil’S Stability Towards Internal Erosion Case of Biskra’S Dam Soil,” Civ. Environ. Eng., vol. 20, no. 1, pp. 332–348, 2024, doi: 10.2478/cee-2024-0026.
- L. WANG, B. MA, and F. WU, “Effects of wheat stubble on runoff, infiltration, and erosion of farmland on the Loess Plateau, China, subjected to simulated rainfall,” Solid Earth, vol. 8, no. 2, pp. 281–290, 2017, doi: 10.5194/se-8-281-2017.
- L. ZHAO, Q. FANG, R. HOU, and F. WU, “Effect of rainfall intensity and duration on soil erosion on slopes with different microrelief patterns,” Geoderma, vol. 396, no. January, 2021, doi: 10.1016/j.geoderma.2021.115085.
- D. DEUSCHLE, J. P. G. MINELLA, T. DE A. N. HÖRBE, A. L. LONDERO, and F. J. A. SCHNEIDER, “Erosion and hydrological response in no-tillage subjected to crop rotation intensification in southern Brazil,” Geoderma, vol. 340, no. July 2018, pp. 157–163, 2019, doi: 10.1016/j.geoderma.2019.01.010.
- M. YUAN, Y. ZHANG, Y. ZHAO, and J. DENG, “Effect of rainfall gradient and vegetation restoration on gully initiation under a large-scale extreme rainfall event on the hilly Loess Plateau: A case study from the Wuding River basin, China,” Science of the Total Environment, vol. 739. 2020. doi: 10.1016/j.scitotenv.2020.140066.
- R. BULKO and S. MASAROVIČOVÁ, “Effect of Lime Filling on the Compactibility of Clay Soils,” Civ. Environ. Eng., vol. 18, no. 2, pp. 501–506, 2022, doi: 10.2478/cee-2022-0047.
- X. JING, Y. CHEN, C. PAN, T. YIN, W. WANG, and X. FAN, “Erosion failure of a soil slope by heavy rain: Laboratory investigation and modified GA model of soil slope failure,” Int. J. Environ. Res. Public Health, vol. 16, no. 6, 2019, doi: 10.3390/ijerph16061075.
- A. SALIMAH, M. AMMAR, D. RAHMAWATI, YELVI, and S. TRI WIDYA, “Landslide Analysis Study and Cisewu Countermeasures in District, Garut Regency, West Java,” IOP Conf. Ser. Mater. Sci. Eng., vol. 771, no. 1, pp. 0–8, 2020, doi: 10.1088/1757-899X/771/1/012046.
- MUJIYO, T. M. PRATINGKAS, O. CAHYONO, and D. P. ARIYANTO, “Landslides Hazard Assessment Using Soil Physics Approaches as a Determinant Factor on Agricultural Land in Hilly Area,” Jurnal Pengelolaan Sumberdaya Alam dan Lingkungan, vol. 14, no. 3. pp. 566–577, 2024. doi: 10.29244/jpsl.14.3.566.
- Y. ZENG et al., “A case study on soil slope landslide failure and parameter analysis of influencing factors for safety factor based on strength reduction method and orthogonal experimental design,” PLoS One, vol. 19, no. 5 May, pp. 1–20, 2024, doi: 10.1371/journal.pone.0300586.
- L. LI et al., “Stability analysis of rainfall-induced landslide considering air resistance delay effect and lateral seepage,” Sci. Rep., vol. 14, no. 1, pp. 1–10, 2024, doi: 10.1038/s41598-024-59121-4.
- X. ZHAO, X. SONG, L. LI, D. WANG, P. MENG, and H. LI, “Effect of microrelief features of tillage methods under different rainfall intensities on runoff and soil erosion in slopes,” Int. Soil Water Conserv. Res., vol. 12, no. 2, pp. 351–364, 2024, doi: 10.1016/j.iswcr.2023.10.001.
- S. BAHDDOU, W. OTTEN, W. R. WHALLEY, H. C. SHIN, M. EL GHAROUS, and R. J. RICKSON, “Changes in soil surface properties under simulated rainfall and the effect of surface roughness on runoff, infiltration and soil loss,” Geoderma, vol. 431, no. February, 2023, doi: 10.1016/j.geoderma.2023.116341.
- T. LI, Y. WANG, and F. WU, “Anti-Erosion Influences of Surface Roughness on Sloping Agricultural Land in the Loess Plateau, Northwest China,” Sustain., vol. 14, no. 10, 2022, doi: 10.3390/su14106246.
- L. WU, M. PENG, S. QIAO, and X. YI MA, “Effects of rainfall intensity and slope gradient on runoff and sediment yield characteristics of bare loess soil,” Environ. Sci. Pollut. Res., vol. 25, no. 4, pp. 3480–3487, 2018, doi: 10.1007/s11356-017-0713-8.
- K. KOSUGI, “Lognormal distribution model for unsaturated soil hydraulic properties,” Water Resour. Res., vol. 32, no. 9, pp. 2697–2703, 1996.
- J. A. P. POLLACCO et al., “HyPix: 1D physically based hydrological model with novel adaptive time-stepping management and smoothing dynamic criterion for controlling Newton–Raphson step,” Environ. Model. Softw., vol. 153, no. January, 2022, doi: 10.1016/j.envsoft.2022.105386.
- C. FANG, H. SHIMIZU, T. NISHIYAMA, and S. I. NISHIMURA, “Determination of residual strength of soils for slope stability analysis: State of the art review,” Rev. Agric. Sci., vol. 8, no. 1971, pp. 46–57, 2020, doi: 10.7831/ras.8.0_46.
- J. B. CLEMENT, F. GOLAY, M. ERSON, and D. SOUS, “Adaptive Discontinuous Galerkin Method for Richard Equation,” in Topical Problems of Fluid Mechanics 2020, 2020, pp. 27–34. doi: https://doi.org/10.14311/TPFM.2020.004.
- A. GUTIÉRREZ-MARTÍN, M. ÁNGEL HERRADA, J. I. YENES, and R. CASTEDO, “Development and validation of the terrain stability model for assessing landslide instability during heavy rain infiltration,” Nat. Hazards Earth Syst. Sci., vol. 19, no. 4, pp. 721–736, 2019, doi: 10.5194/nhess-19-721-2019.
- N. A. PUTRI, AZWALANAS, AHAMID, HARDITIA, ALPIANA, and HIDAYATI, “An Analysis of Single Slope Stability at Pemenang Road Using Bishop Method,” IOP Conf. Ser. Earth Environ. Sci., vol. 1175, no. 1, 2023, doi: 10.1088/1755-1315/1175/1/012006.
- S. KUMAR, A. KUMAR, B. RAO, S. S. CHOUDHARY, and A. BURMAN, “Analysis of 2D and 3D Slope Stability Using the Bishop Simplified Method,” IOP Conf. Ser. Earth Environ. Sci., vol. 1326, no. 1, 2024, doi: 10.1088/1755-1315/1326/1/012117.
- N. S. DOAN, “Reliability analysis and uncertainty quantification of clay and sand slopes stability evaluated by Fellenius and Bishop’s simplified methods,” Int. J. Geo-Engineering, vol. 14, no. 1, 2023, doi: 10.1186/s40703-023-00200-2.
- M. A. MAODIN, FARYANSAH, S. D. ARIADI, G. S. VERLANDI, ALPIANA, and HIDAYATI, “Analysis of Andesite Rock Slope Stability with Bishop Method,” IOP Conf. Ser. Earth Environ. Sci., vol. 1175, no. 1, 2023, doi: 10.1088/1755-1315/1175/1/012007.
- R. R. WEIL and NYLE C. BRADLY, The Nature and Properties of Soil, vol. 11, no. 1. 2017. [Online]. Available: http://scioteca.caf.com/bitstream/handle/123456789/1091/RED2017-Eng-8ene.pdf?sequence=12&isAllowed=y%0Ahttp://dx.doi.org/10.1016/j.regsciurbeco.2008.06.005%0 Ahttps://www.researchgate.net/publication/305320484_SISTEM_PEMBETUNGAN_TERPUSAT_STRATEGI_MELESTARI
- DANIEL HILLEL, Environmental Soil Physics. Academic Press, Inc., 1998.
- ASDM D2937, Standard Test Method for Density of Soil in Place by the Drive-Cylinder Method, vol. 4, no. June. 2000, pp. 1–2.
- ASTM D698, Standard Test Methods for Laboratory Compaction Characteristics of Soil Using Standard Effort (12,400 ft-lbf/ft3 (600 kN-m/m3))1, no. Reapproved 1989. 2021, pp. 1–2. doi: 10.1520/C1709-18.
- ASTM D1557, Standard Test Methods for Laboratory Compaction Characteristics of Soil Using Modified Effort (56,000 ft-lbf/ft3 (2,700 kN-m/m3))1, vol. 08, no. Reapproved 2021. 2021, pp. 1–2. doi: 10.1520/C1709-18.
