Have a personal or library account? Click to login
Assessment of a Plastic and Liapor Mixture in Terms of Compressive Strength Cover

Assessment of a Plastic and Liapor Mixture in Terms of Compressive Strength

Open Access
|Jun 2025

References

  1. HODÁS, S. – PULTZNEROVÁ, A.: Modelling of Railway Track Temperature Regime with Real Heat-Technical Values for Different Climatic Characteristics. Civil and Environmental Engineering, Vol. 13, Iss. 2, 2017, pp. 134-142, https://doi.org/10.1515/cee-2017-0018.
  2. HODÁS, S. – PULTZNEROVÁ, A.: Freezing of the Subballast Layers of the Railway Formation - High Embankment and Double Track. Civil and Environmental Engineering, Vol. 15, Iss. 1, 2019, pp. 5-12, https://doi.org/10.2478/cee-2019-0002.
  3. IŽVOLT, L. – DOBEŠ, P. – HOLEŠOVÁ, M. – NAVIKAS, D.: Numerical Modelling of Thermal r Regime of Railway Track: Structure with Thermal Insulation (Styrodur). Journal of Civil Engineering and Management: Journal of Vilnius Gediminas Technical University and Lithuanian Academy of Sciences, Vol. 27, Iss. 7, 2019, pp. 525-538, https://doi.org/10.3846/jcem.2021.14903.
  4. IŽVOLT, L. – DOBEŠ, P. – DRUSA, M. – KADELA, M. – HOLEŠOVÁ, M.: Experimental and Numerical Verification of the Railway Track Substructure with Innovative Thermal Insulation Materials. Materials, Vol. 15, Iss. 1, 2022, pp. 1-27, https://doi.org/10.3390/ma15010160.
  5. ALISHVANDI, A. – KARIMI, J. – DAMARI, S. – FAR, A.M. – POUR, M.S. – AHMADI, M.: Estimating the Compressive Strength of Plastic Concrete Samples Using Machine Learning Algorithms. Asian Journal of Civil Engineering, Vol. 25, 2024, pp. 1503-1516, https://doi.org/10.1007/s42107-023-00857-1.
  6. ATIF, K.S. – ASADULLAH-AL-GALIB, M. – AHMED, N.: A Comparative Study on Compressive Strength of Concrete Mix Containing Plastic, Glass and Rubber Aggregates. Advances in Applied Sciences, Vol. 5, Iss. 4, 2020, pp. 97-102, https://doi.org/10.11648/j.aas.20200504.11.
  7. ISMAEEL, A.M. – USMAN, F. – HAYDER, G. – AL-ANI, Y.: Creating Sustainable Ultra-High-Performance Concrete (UHPC) Utilizing Recycled Glass. Civil and Environmental Engineering, Vol. 20, Iss. 2, 2024, pp. 1152-1161, https://doi.org/10.2478/cee-2024-0084.
  8. CELIK, A.O. – KILINÇ, K. – TUNCAN, M. – TUNCAN, A.: Distributions of Compressive Strength Obtained from Various Diameter Cores. ACI Materials Journal, Vol 109, Iss. 6, 2012, pp. 597-606.
  9. GYURKÓ, Z. – NEMES, R.: Specimen Size and Shape Effect on the Compressive Strength of Normal Strength Concrete. Periodica Polytechnica Civil Engineering, Vol. 64, Iss. 1, 2020, pp. 276-286, https://doi.org/10.3311/PPci.15338.
  10. ANUM, I. – JOB, O.F.: Compressive Strength Characteristics of Concrete Modified with Treated High-Density Polyethylene. CSID Journal of Infrastructure Development, Vol. 4, Iss. 1, 2021, pp. 112-121, https://doi.org/10.32783/csid-jid.v4i1.201.
  11. PUSHPA, L. – PALLAVI, G.A. – BHAVYA, C.H. – VANISHREE, S. – SUPRIYA, C.B.: Use of Waste Plastic as Fine Aggregate Substitute in Concrete. IOP Conference Series: Materials Science and Engineering, Vol. 1255, 2022, pp. 1-6, https://doi.org/10.1088/1757-899X/1255/1/012010.
  12. VENKATA RAMANA, D. – ARAVINDA, K. – ABHIJITH KUMAR, A.N. – SORABH, L. – VANDANA, A.S. – HAYIDR, M. – DINESH KUMAR, Y.: Use of Plastic Waste as Recycled Material in the Concrete. Web of Conferences, Vol. 529, 2024, pp. 1-11, https://doi.org/10.1051/e3sconf/202452901035.
  13. NGUYEN, V.V. – LE, V.S. – LOUDA, P. – SZCZYPIŃSKI, M.M. – ERCOLI, R. – RŮŽEK, V. – ŁOŚ, P. – PRAŁAT, K. – PLASKOTA, P. – PACYNIAK, T. – BUCZKOWSKA, K.E.: Low-Density Geopolymer Composites for the Construction Industry. Polymers (Basel), Vol. 14, Iss. 2, 2022, pp. 1-10, https://doi.org/10.3390/polym14020304.
  14. VU, CH.C. – PLÉ, O. – WEISS, J. – AMITRANO, D.: Revisiting the Concept of Characteristic Compressive Strength of Concrete. Construction and Building Materials, Vol. 263, 2020, https://doi.org/10.1016/j.conbuildmat.2020.120126.
  15. MURILLO, M. – ABUDINEN, D. – TORRES, D. – VÁSQUEZ, M. – CANO, H. – CANALES, F. – DE LA IGLESIA, J. – BARRAZA, B.: Experimental and Comparative Study of the Compressive Strength of Hydraulic Concrete Samples Subjected to Various Curing Techniques. Journal of Positive School Psychology, Vol. 6, Iss. 4, 2022, pp. 8258-8271.
  16. CHUNG, S.Y – ELRAHMAN, M.A. – STEPHAN, D. – KAMM, P.H.: The Influence of Different Concrete Additions on the Properties of Lightweight Concrete Evaluated Using Experimental and Numerical Approaches. Construction and Building Materials, Vol. 189, 2018, pp. 314-322, https://doi.org/10.1016/j.conbuildmat.2018.08.189.
  17. AHMAD, H. – WAHID, N. – RAHMAN, M.F.A – KARIM, N.A: Influence of Fly Ash on the Compressive Strength of Foamed Concrete at Elevated Temperature. MATEC Web of Conferences, Vol. 15, 2014, pp. 1-7, https://doi.org/10.1051/matecconf/20141501003.
  18. SUDIN, M.A.S. – RAMLI, M: Effect of Specimen Shape and Size on the Compressive Strength of Foamed Concrete. MATEC Web of Conferences, Vol. 10, 2014, pp. 1-6, https://doi.org/10.1051/matecconf/20141002003.
  19. OTHMAN, R. – MUTHUSAMY, K. – SULAIMAN, M.A. – DURAISAMY, Y – JAYA, R.P. – WEI, CH.B. – ABDULLAH, M.M.A.B. – MANGI, S.A. – NABIAŁEK, M. – ŚLIWA, A.: Compressive strength and Durability of Foamed Concrete Incorporating Processed Spent Bleaching Earth. Archives of Civil Engineering, Vol. 68, Iss. 2, 2022, pp. 627-643, https://doi.org/10.24425/ace.2022.140663.
  20. SUPRIYADI, A. – SUTANDAR, E.: The Porous Concrete for Rigid Pavement. Civil and Environmental Engineering, Vol. 19, Iss. 1, 2023, pp. 48-58, https://doi.org/10.2478/cee-2023-0005.
  21. ALSHAEER, H.A.Y. – IRWAN, J.M. – ALSHALIF, A.F. – NOMAN, E.A. – AMRAN, M. – GAMIL, Y. – ALHOKABI, A. – AL-GHEETHI, A.A.: Optimisation of Compressive Strength of Foamed Concrete with a Novel Asperigillus Iizukae EAN605 Fungus. Case Studies in Construction Materials, Vol. 19, 2023, pp. 1-21, https://doi.org/10.1016/j.cscm.2023.e02400.
  22. IŽVOLT, L. – DOBEŠ, P. – MEČÁR, M.: Testing the suitability of the extruded polystyrene (styrodur) application in the track substructure. Acta Polytechnica: journal of advanced engineering, Vol. 60, Iss. 3, 2020, pp. 243-251, https://doi.org/10.14311/AP.2020.60.0243.
DOI: https://doi.org/10.2478/cee-2025-0054 | Journal eISSN: 2199-6512 | Journal ISSN: 1336-5835
Language: English
Page range: 749 - 756
Published on: Jun 16, 2025
Published by: University of Žilina
In partnership with: Paradigm Publishing Services
Publication frequency: 2 issues per year

© 2025 Peter Dobeš, Libor Ižvolt, Martin Ščotka, Włodzimierz Biniaś, published by University of Žilina
This work is licensed under the Creative Commons Attribution 4.0 License.