Have a personal or library account? Click to login
Impact of Strength-Enhancing Admixtures on Stabilization of Expansive Soil by Addition of Alternative Binders Cover

Impact of Strength-Enhancing Admixtures on Stabilization of Expansive Soil by Addition of Alternative Binders

By: Per Lindh and  Polina Lemenkova  
Open Access
|Dec 2022

References

  1. [1] YOUNG, J. F.: Portland Cements. Eds.: BUSCHOW, K. H. J. – CAHN, R. W. – FLEMINGS, M. C. – ILSCHNER, B. – KRAMER, E. J. – MAHAJAN, S. – VEYSSIÈRE. P.: Encyclopedia of Materials: Science and Technology. Elsevier, 2001, pp. 7768-7773, doi: 10.1016/B0-08-043152-6/01398-X.
  2. [2] SORSA, A.: Engineering Properties of Cement Stabilized Expansive Clay Soil. Civil and Environmental Engineering, Vol. 18, Iss. 1, 2022, pp. 332-339, doi: 10.2478/cee-2022-0031.
  3. [3] CHERIAN, C. – ARNEPALLI, D. N.: A Critical Appraisal of the Role of Clay Mineralogy in Lime Stabilization. International Journal of Geosynthetics and Ground Engineering, Vol. 1, Nr. 8, 2015, 20 p.10.1007/s40891-015-0009-3
  4. [4] LINDH, P. – LEMENKOVA, P.: Geochemical tests to study the effects of cement ratio on potassium and TBT leaching and the pH of the marine sediments from the Kattegat Strait, Port of Gothenburg, Sweden. Baltica, Vol. 35, Iss. 1, 2022, pp. 47–59, doi: 10.5200/baltica.2022.1.4.
  5. [5] SHAH, S. – ARIF, M. – SABIR, M. – REHMAN, Q.: Impact of Igneous Rock Admixtures on Geotechnical Properties of Lime Stabilized Clay. Civil and Environmental Engineering, Vol. 16, Iss. 2, 2020, pp. 329-339, doi: 10.2478/cee-2020-0033.
  6. [6] LINDH, P. – LEMENKOVA, P.: Evaluation of Different Binder Combinations of Cement, Slag and CKD for S/S Treatment of TBT Contaminated Sediments. Acta Mechanica et Automatica, Vol. 15, Iss. 4, 2021, pp. 236–248, doi: 10.2478/ama-2021-0030.
  7. [7] EBEREMU, A. O. – OSINUBI, K. J. – IJIMDIYA, T. S. – SANI, J. E.: Cement Kiln Dust: Locust Bean Waste Ash Blend Stabilization of Tropical Black Clay for Road Construction. Geotechnical and Geological Engineering, Vol. 37, 2019, pp. 3459–3468, doi: 10.1007/s10706-018-00794-w.
  8. [8] OGILA, W. A. M.: Effectiveness of fresh cement kiln dust as a soil stabilizer and stabilization mechanism of high swelling clays. Environmental Earth Sciences, Vol. 80, Nr. 283, 2021.10.1007/s12665-021-09589-4
  9. [9] LINDH, P.: Optimizing binder blends for shallow stabilisation of fine-grained soils. Ground Improvement, Vol. 5, 2001, pp. 23–34, doi: 10.1680/grim.2001.5.1.23.
  10. [10] LINDH, P. – LEMENKOVA, P.: Seismic velocity of P-waves to evaluate strength of stabilized soil for Svenska Cellulosa Aktiebolaget Biorefinery Östrand AB, Timrå. Bulletin of the Polish Academy of Sciences: Technical Sciences, Vol. 70, Iss. 4, 2022, pp. 1–9.
  11. [11] DOLGIKH, P. D.: Stabilization of slumping loess soils by injection of a lime-slag suspension. Soil Mechanics and Foundation Engineering, Vol. 3, 1966, pp. 272–273, doi: 10.1007/BF01703524.
  12. [12] LINDH, P. – LEMENKOVA, P.: Soil contamination from heavy metals and persistent organic pollutants (PAH, PCB and HCB) in the coastal area of Västernorrland, Sweden. Gospodarka Surowcami Mineralnymi – Mineral Resources Management, Vol. 38, Iss. 2, 2022, pp. 147–168.
  13. [13] GRUBEŠA, I. N. – BARIŠIĆ, I. – FUCIC, A. – BANSODE, S. S.: 4 – Application of blast furnace slag in civil engineering: Worldwide studies. Characteristics and Uses of Steel Slag in Building Construction, 2016, pp. 51–66, doi: 10.1016/B978-0-08-100368-8.00004-X.
  14. [14] MARK, O. – EDE, A. – ARUM, C. – OYEBISI, S.: Effects of Induction-Furnace Slag on Strength Properties of Self-Compacting Concrete. Civil and Environmental Engineering, Vol. 17, Iss. 2, 2021, pp. 513-527, doi: 10.2478/cee-2021-0053.
  15. [15] DOUCET, F. J.: Effective CO2-specific sequestration capacity of steel slags and variability in their leaching behaviour in view of industrial mineral carbonation. Minerals Engineering, Vol. 23, Iss. 3, 2010, pp. 262-269, doi: 10.1016/j.mineng.2009.09.006.
  16. [16] LINDH, P. – LEMENKOVA, P.: Resonant Frequency Ultrasonic P-Waves for Evaluating Uniaxial Compressive Strength of the Stabilized Slag–Cement Sediments. Nordic Concrete Research, Vol. 65, Iss. 2, 2021, pp. 39–62, doi: 10.2478/ncr-2021-0012.
  17. [17] ISMAIL, A. I. M. – RYDEN, N.: The Quality Control of Engineering Properties for Stabilizing Silty Nile Delta Clay Soil, Egypt. Geotechnical and Geological Engineering, Vol. 32, 2014, pp. 773–781.10.1007/s10706-014-9756-5
  18. [18] JIAO, H. – DU, X. – ZHAO, M. – HUANG, J. – ZHAO, X. – OUYANG, W.: Nonlinear Seismic Response of Rock Tunnels Crossing Inactive Fault under Obliquely Incident Seismic P Waves. Journal of Earth Science, Vol. 32, 2021, pp. 1174–1189, doi: 10.1007/s12583-021-1483-2.
  19. [19] CARPINTERI, A. – LACIDOGNA, G. – PUGNO, N.: Structural damage diagnosis and life-time assessment by acoustic emission monitoring. Engineering Fracture Mechanics, Vol. 74, 2007, pp. 273–289, doi: 10.1016/j.engfracmech.2006.01.036.
  20. [20] AGGELIS, D. G.: Classification of cracking mode in concrete by acoustic emission parameters. Mechanics Research Communications, Vol. 38, 2011, pp. 153–157.10.1016/j.mechrescom.2011.03.007
  21. [21] SS-EN 13286-41 Unbound and hydraulically bound road materials – Part 41: Test method for determining the compressive strength of hydraulically bound materials (in Swedish). Swedish Institute for Standards, 2003.
  22. [22] SS-EN 137244: Concrete testing – Hardened concrete – Flaking during freezing (in Swedish). Swedish Institute for Standards, 2005.
  23. [23] MURTHI, P. – SARAVANAN, R. – POONGODI, K.: Studies on the impact of polypropylene and silica fume blended combination on the material behaviour of black cotton soil. Materials Today Proceedings, Vol. 39, 2021, pp. 621–626, doi: 10.1016/j.matpr.2020.09.004
  24. [24] YIN, Z. – LEKALPURE, R. L. – NDIEMA, K. M.: Experimental Study of Black Cotton Soil Stabilization with Natural Lime and Pozzolans in Pavement Subgrade Construction. Coatings, Vol. 12, Iss. 1, 2022, p. 103, doi: 10.3390/coatings12010103
  25. [25] NAVAGIRE, O. P. – SHARMA, S. K. – RAMBABU, D.: Stabilization of black cotton soil with coal bottom ash. Materials Today: Proceedings, Vol. 52, 2022, pp. 979–985.10.1016/j.matpr.2021.10.447
DOI: https://doi.org/10.2478/cee-2022-0067 | Journal eISSN: 2199-6512 | Journal ISSN: 1336-5835
Language: English
Page range: 726 - 735
Published on: Dec 14, 2022
Published by: University of Žilina
In partnership with: Paradigm Publishing Services
Publication frequency: 2 issues per year

© 2022 Per Lindh, Polina Lemenkova, published by University of Žilina
This work is licensed under the Creative Commons Attribution 4.0 License.