Have a personal or library account? Click to login
Compressive Strengths of Pavement Recycling Materials and New Approach for Cement Content Determination Cover

Compressive Strengths of Pavement Recycling Materials and New Approach for Cement Content Determination

Open Access
|Jun 2021

References

  1. [1] GIUSTOZZI, F. - TORALDO, E. - CRISPINO, M.: Recycled airport pavements for achieving environmental sustainability: An Italian case study. Resources, conservation and recycling, 68, 2012, pp. 67-75.10.1016/j.resconrec.2012.08.013
  2. [2] BHAVSAR, H. - DUBEY, R. - KELKAR, V.: Rehabilitation by in-situ cold recycling technique using reclaimed asphalt pavement material and foam bitumen at vadodara halol road project (SH 87) a case study. Transportation Research Procedia, 17, 2016, pp. 359-368.10.1016/j.trpro.2016.11.126
  3. [3] KUMPALA, A. - JITSANGIAM, P. - ARNGBUNTA, A. - SINGHAN, P.: Compaction and Strength Characteristics of Recycled Pavement Material: Cement Mixtures Used for Road Pavement Purposes. Scientific Research and Essays, 14(3), 2019, pp. 15-23.10.5897/SRE2018.6583
  4. [4] GAO, L. - Ni, F. - CHARMOT, S. - LUO, H.: Influence on Compaction of Cold Recycled Mixes with Emulsions Using the Superpave Gyratory Compaction. Journal of Materials in Civil Engineering, 26(11), 2014, pp. 04014081.10.1061/(ASCE)MT.1943-5533.0000987
  5. [5] ANDREW, E. A. – BECCA, L. – TOM, K.: Sustainable pavements environmental, economic, and social benefits of in situ pavement recycling. Transportation Research: Record Journal of the Transportation Research Board, 2084(1), 2018, pp. 100–103.10.3141/2084-11
  6. [6] PAN, Y. - HAN, D. - YANG, T. - TANG, D. - HUANG, Y. - TANG, N. - ZHAO, Y.: Field observations and laboratory evaluations of asphalt pavement maintenance using hot in-place recycling. Construction and Building Materials, 271, 2021, pp. 121864.10.1016/j.conbuildmat.2020.121864
  7. [7] COX, B. C. - HOWARD, I. L.: Cold In-Place Recycling Characterization Framework and Design Guidance for Single or Multiple Component Binder Systems. A report commissioned by Mississippi Department of Transportation (MDOT). Mississippi State University, Starkville, 2015,https://www.cee.msstate.edu/publications/2015_FHWA_MS_DOT_RD_15_250_Vol_2_CIR.pdf, assessed 17th February 2021.
  8. [8] MA, N. - SAMMON, W. J.: Enhancement of in-plant recycling of integrated steel mill off gas solid wastes by reallocating crucial zinc-bearing materials. Journal of Cleaner Production, 251, 2020, p. 119783.10.1016/j.jclepro.2019.119783
  9. [9] XIAO, F. - YAO, S. - WANG, J. - LI, X. - AMIRKHANIAN, S.: A Literature Review on Cold Recycling Technology of Asphalt Pavement. Construction and Building Materials, 180, 2018, pp. 579-604.10.1016/j.conbuildmat.2018.06.006
  10. [10] ASTM D422: Standard test method for particle-size analysis of soils. ASTM International, West Conshohocken, Pennsylvania, USA.
  11. [11] ASTM D4318: Standard test methods for liquid limit, plastic limit, and plasticity index of soils. American Society for Testing and Materials, West Conshohocken, Pennsylvania, USA
  12. [12] ASTM D1557: Standard test methods for laboratory compaction characteristics of soil using modified effort (56,000 ft-lbf/ft3 – 2,700 kN-m/m3). ASTM International, West Conshohocken, Pennsylvania, USA.
  13. [13] ASTM D 2166: Standard Test Method for Unconfined Compressive Strength of Cohesive Soil, West Conshohocken, Pennsylvania, USA
  14. [14] DH-S. 203/2556: Standard for Cement Modified Crushed Rock Base (In Thai), Department of Highways, Thailand, 2013.
  15. [15] HORPIBULSUK, S. - KATKAN, W. - SIEILERDWATTANA, W. - RACHAN, R.: Strength Development in Cement Stabilized Low Plasticity and Coarse-Grained Soils: Laboratory and field study. Soils and foundations, 46(3), 2006, pp. 351-366.10.3208/sandf.46.351
  16. [16] HORPIBULSUK, S. - MIURA, N. - NAGARAJ, T. S.: Clay–water⁄cement ratio identity for cement admixed soft clays. Journal of geotechnical and geoenvironmental engineering, 131(2), 2005, pp. 187-192.10.1061/(ASCE)1090-0241(2005)131:2(187)
  17. [17] HORPIBULSUK, S. - KATKAN, W. - SIRILERDWATTANA, W. - RACHAN, R.: Strength development in cement stabilized low plasticity and coarse-grained soils: Laboratory and field study. Soils and foundations, 46(3), 2006, pp. 351-366.10.3208/sandf.46.351
  18. [18] ÖSER, C.: Determining the plasticity properties of high plastic clays: a new empirical approach. Arabian Journal of Geosciences, 13, 2020, pp. 1-8.10.1007/s12517-020-05412-9
  19. [19] CHINKULKIJNIWAT, A. - HORPIBULSUK, S.: Field strength development of repaired pavement using the recycling technique. Geological Society of London, 45(2), 2012, pp. 221-9.10.1144/1470-9236/11-031
  20. [20] RUENKRAIRERGSA, T. - CHARATKHON, S.: Compressive Strength of Soil-Cement under Different Density. Report of research and development of highways, Thailand, 2001.
  21. [21] JOEL, M. – AGBEDE, I. O.: Mechanical-cement stabilization of laterite for use as flexible pavement material. Journal of Materials in Civil Engineering, 23(2), 2011, pp. 146-152.10.1061/(ASCE)MT.1943-5533.0000148
DOI: https://doi.org/10.2478/cee-2021-0035 | Journal eISSN: 2199-6512 | Journal ISSN: 1336-5835
Language: English
Page range: 335 - 342
Published on: Jun 22, 2021
Published by: University of Žilina
In partnership with: Paradigm Publishing Services
Publication frequency: 2 issues per year

© 2021 Amorndech Noulmanee, Nutthachai Prongmanee, Wannapa Pukdee, Pattarapong Singhan, published by University of Žilina
This work is licensed under the Creative Commons Attribution 4.0 License.