[1] SRINIVASAN, R. S. - MANOHARAN, B. - ISSA, R. R. A.: Urban Building Energy CPS (UBE-CPS): Realtime Demand Response using Digital Twin. In CPS in the Built Environment, Anumba, C.A., Roofigari, N., Eds., Springer, Berlin/Heidelberg, Germany, 2020, pp. 309-322.10.1007/978-3-030-41560-0_17
[2] MOZAFARI, N. - ALIMARDANI, M.: Climate Adaptability of Old and New House in Bushehr´s Historical Texture. Civil and Environmental Engineering, Vol. 16, Iss. 2, 2020, pp. 249-258.10.2478/cee-2020-0024
[3] DURICA, P. - JURAS, P. - STAFFENOVA, D. - RYBARIK, J.: Lightweight Wood-Based Wall: The Long-Time Evaluation of Heat-Air-Moisture Transport. Communications - Scientific Letters of the University of Zilina, Vol. 18, Iss. 4, 2016, pp. 68-76.10.26552/com.C.2016.4.68-76
[4] PONECHAL, R. - STAFFENOVA, D.: Insulation Thickness versus Dynamic Thermal Parameters of External Walls with Regard to the Thermal Stability. Communications - Scientific Letters of the University of Zilina, Vol. 19, Iss.3, 2017, pp. 102-108.10.26552/com.C.2017.3.102-108
[5] FABI, V. - ANDERSEN, R. V. - CORGNATI, S. - OLESEN, B. W.: Occupants’ window opening behaviour: A literature review of factors influencing occupant behaviour and models. Build. Environ., 58, 2012, pp. 188–198.10.1016/j.buildenv.2012.07.009
[7] MAY-OSTENDORP P. - HENZE G. P. - CORBIN CH. D. - RAJAGOPALAN, B. - FELSMANN C.: Model-predictive control of mixed-mode buildings with rule extraction. Building and Environment, Vol. 46, Iss. 2, 2011, pp. 428-437.10.1016/j.buildenv.2010.08.004
[8] COFFEY B.: Approximating model predictive control with existing building simulation tools and offline optimization. Journal of Building Performance Simulation, Vol. 6, Iss. 3, 2013, pp. 220-235.10.1080/19401493.2012.737834
[9] LEE, Y. - MALKAWI, A.: Simulating human behavior: An agent-based modeling approach. Proceedings of the 13th IBPSA Conference, Chambery, France, 26–28 August, 2013.
[10] HONG, T. - D’OCA, S. - TURNER, W. J. N. - TAYLOR-LANGE, S. C.: An ontology to represent energy-related occupant behavior in buildings. Part I: Introduction to the DNAs framework. Building and Environment, Iss. 92, 2015, pp. 764–777.10.1016/j.buildenv.2015.02.019
[11] HONG, T. - D’OCA, S. - TAYLOR-LANGE, S. C. - TURNER, W. J. N. - CHEN, Y. - CORGNATI, S. P.: An ontology to represent energy-related occupant behavior in buildings. Part II: Implementation of the DNAS framework using an XML schema. Building and Environment, Iss. 94, 2015, pp.196–205.10.1016/j.buildenv.2015.08.006
[12] RIJAL, H. et al.: Using results from field surveys to predict the effect of open windows on thermal comfort and energy use in buildings. Energy and Buildings, Vol. 39, Iss.7, 2007, p. 823-836.10.1016/j.enbuild.2007.02.003
[13] HALDI, F., - ROBINSON, D.: The impact of occupants behavior on building energy demand. Journal of Building Performance Simulation, Vol. 4, Iss. 4, 2011, pp. 323-338.10.1080/19401493.2011.558213
[14] BOURGEOIS, D.: Detailed occupancy prediction, occupancy-sensing control and advanced behavioural modeling within whole-building energy simulation. PhD Thesis from Faculté Des Études Supérieures, Université Laval, Québec, 2005, 148 p.
[15] CHEN, Y. - LUO, X. - HONG, T.: An Agent-Based Occupancy Simulator for Building Performance Simulation. Conference: 2016 ASHRAE Annual Conference At: St. Louis, MO, USA, 2016.
[16] DZIEDZIC, J. W. - YAN, D. - SUN, H. - NOVAKOVIC, V.: Building occupant transient agent-based model–Movement module. Applied Energy, Vol. 261, 2020, 114417.10.1016/j.apenergy.2019.114417
[17] CHEN, Y. - LIANG, X. - HONG, T. - LUO, X.: Simulation and visualization of energy-related occupant behavior in office buildings. Building Simulation, Tsinghua University Press, Beijing, China, Vol. 10, 2017, pp. 785–798.10.1007/s12273-017-0355-2
[18] JIANJUN H. J. - KARAVA, P.: Model predictive control strategies for buildings with mixed-mode cooling. Building and Environment, Vol. 71, 2014, pp. 233-244.10.1016/j.buildenv.2013.09.005
[19] ISO 7730:2005 Ergonomics of the thermal environment — Analytical determination and interpretation of thermal comfort using calculation of the PMV and PPD indices and local thermal comfort criteria
[20] NICOL, J. F. - HUMPHREYS, M. A.: Adaptive thermal comfort and sustainable thermal standards for buildings. Energy and Buildings, Vol. 34, 2002, pp. 563–572.10.1016/S0378-7788(02)00006-3
[21] SCHELLEN, L. – VAN MARKEN, L. W. D. - LOOMANS, M. G. L. C. - TOFTUM, J. – DE WIT, M. H.: Differences between young adults and elderly in thermal comfort, productivity, and thermal physiology in response to a moderate temperature drift and a steady-state condition. Indoor Air, Vol. 20, 2010, pp. 273-283.10.1111/j.1600-0668.2010.00657.x
[22] HYVARINEN, J. - KÄRKI, S.: Building Optimization and Fault Diagnosis Source Book. IEA Annex 25, Technical Research Centre of Finland, Espoo, Finland, 1996.
[23] JEON, B. K. - KIM, E. J. - SHIN, Y. - LEE, K. H.: Learning-Based Predictive Building Energy Model Using Weather Forecasts for Optimal Control of Domestic Energy Systems. Sustainability, Vol. 11, Iss. 1, 2018, pp. 1-16.10.3390/su11010147
[24] PONECHAL, R. - KYSELA P.: The Influence of Ventilation Schedules on Summer Thermal Comfort in Small Dwellings. Proceedings of 11. Conf. IBPSA-CZ, Brno, 2020.
[25] PONECHAL, R. – JURASOVA, D.: The impact of heat gain schedules on summer overheating in typical insulated dwellings. In International Review of Applied Sciences and Engineering, IRASE, Budapešť, Akadémiai Kiadó, Vol. 9, No. 2, 2018, pp. 123-128.10.1556/1848.2018.9.2.7
[26] RIJAL H. B. - TUOHY P. - NICOL F. - HUMPHREYS M. A. - SAMUEL A. - CLARKE J.: Development of an adaptive window-opening algorithm to predict the thermal comfort, energy use and overheating in buildings. Journal of Building Performance Simulation, Vol. 1, Iss. 1, 2008, pp.17-30.10.1080/19401490701868448
[27] JURASOVA, D.: Analysis of Long-term Measured Exterior Air Temperature in Zilina. Civil and Environmental Engineering, Vol. 14, Iss. 2, 2018, pp.124-131.10.2478/cee-2018-0016