Have a personal or library account? Click to login
Bending Performance of Half-Slab Styrofoam Mortar with Glazed Nylon Fiber Cover

Bending Performance of Half-Slab Styrofoam Mortar with Glazed Nylon Fiber

Open Access
|Jun 2021

References

  1. [1] ADMIN.: Precast Concrete in Building (A Guide to Design and Construction). Camberley, UK: The Concrete Centre, 2007.
  2. [2] NUNALLY, S. W.: Construction Method and Management. 7th edition, New Jersey, USA: Pearson Education, 2007.
  3. [3] CHO, K. - SHIN, Y. - KIM, T.: Effects of Half-Precast Concrete Slab System on Construction Productivity. Sustainability, Vol. 9, No. 7, 2017, pp. 1-15. doi: 10.3390/su9071268.10.3390/su9071268
  4. [4] LEE, Y. L. – KARIM, A. T. A. – ISMAIL, A. R. – CHAI, T. J. – KOH, H. B. - NAGAPAN, S. – YEOH, D.: Deflection Of Reinforced Concrete Half-Slab. Int. J. Constr. Technol. Manag., Vol. 1, Jun., 2013, pp. 2289–4454.
  5. [5] ACI 213R-03.: Guide for Structural Lightweight-Aggregate Concrete. American Concrete Institute, Farmington Hills, MI, USA, 2003.
  6. [6] GILANI, H. G. - SAMPER, K. G. - HAGHI, R. K.: Advanced Process Control and Simulation for Chemical Engineers. Florida, U.S.A.: Apple Academic Press, 2013.
  7. [7] ALQAHTANI, F. K. - GHATAORA, G. - KHAN, M. I. - DIRAR, S.: Novel lightweight concrete containing manufactured plastic aggregate. Constr. Build. Mater. Vol. 148, Sep. 2017, pp. 386–397. doi: 10.1016/j.conbuildmat.2017.05.011.10.1016/j.conbuildmat.2017.05.011
  8. [8] ADMIN.: The Rundown on Plastic #6 (Styrofoam). American Disposal Services. https://americandisposal.com/blog/the-rundown-on-plastic-6-styrofoam/ (accessed Dec. 12, 2019).
  9. [9] SOLIKIN, M. - WIDIYANTO, R. - ASRONI, A. - SETIAWAN, B. - ASNAN, M. N.: High content Styrofoam as partial substitution for fine aggregate in SCC lightweight concrete brick. AIP Conference Proceedings, June 2019, pp. 030022-1 - 030022-6. doi: 10.1063/1.5112426.10.1063/1.5112426
  10. [10] NAIK, T. R. - KUMAR, R.: Self-Compacting Concrete (SCC) or Selfleveling Concrete (SLC). Madison, USA: Department of Civil Engineering and Mechanics College of Engineering and Applied Science The University Of Wisconsin - Milwaukee, 2001.
  11. [11] DE SCHUTTER, G. – GIBBS, J - DOMONOE, P.: Self-compacting Concrete. Whittles Publishing, Scotland, UK. 2008.
  12. [12] MARCALIKOVA, Z. - CAJKA, R.: Determination of Mechanical Properties of Fiber Reinforced Concrete for Numerical Modelling. Civ. Environ. Eng., Vol. 16, No. 1, 2020, pp. 86–106. doi: https://doi.org/10.2478/cee-2020-0010.10.2478/cee-2020-0010
  13. [13] YOO, D. Y. - YOON, Y. S.: A Review on Structural Behavior, Design, and Application of Ultra-High-Performance Fiber-Reinforced Concrete. Int. J. Concr. Struct. Mater., Vol. 10, No. 2, 2016, pp. 125–142. doi: 10.1007/s40069-016-0143-x.10.1007/s40069-016-0143-x
  14. [14] LEE, S.: Effect of Nylon Fiber Addition on the Performance of Recycled Aggregate Concrete. Applied Sciences, Vol. 9, No. 4. 2019, pp. 1-14. doi: 10.3390/app9040767.10.3390/app9040767
  15. [15] YOO, D. Y. - BANTHIA, N.: Impact resistance of fiber-reinforced concrete – A review. Cem. Concr. Compos., Vol. 104, 2019, pp. 1 - 22 doi: https://doi.org/10.1016/j.cemconcomp.2019.103389.10.1016/j.cemconcomp.2019.103389
  16. [16] SKH-1.7.23.: Spesifikasi Khusus - Interim Skh-1.7.23 Beton Memadat Sendiri (in English: Special specification for Self Compacting Concrete). Jakarta: Kementerian Pekerjaan Umum Dan Perumahan Rakyat Republik Indonesia Direktorat Jenderal Bina Marga, 2017.
  17. [17] EZELDIN, A. S. - PERUMALSAMY, B. N.: Normal- and High-Strength Fiber-Reinforced Concrete under Compression, J. Mater. Civ. Eng., Vol. 4, No. 4, Nov. 1992, pp. 415–429. doi: 10.1061/(ASCE)0899-1561(1992)4:4(415).10.1061/(ASCE)0899-1561(1992)4:4(415)
  18. [18] FANTILLI, A. P. - VALLINI, P. - FERRETTI, D. - IORI, I.: Behaviour of R/C Elements in Bending and Tension: The Problem of Minimum Reinforcement Ratio, in Minimum Reinforcement in Concrete Members. A. B. T.-E. S. I. S. Carpinteri, Ed. Elsevier, Vol. 24, 1999, pp. 99–125.10.1016/S1566-1369(99)80063-6
  19. [19] TAYLOR, M. - LYDON, F. D. - BARR, B. I. G.: Toughness measurements on steel fibre-reinforced high strength concrete. Cem. Concr. Compos., Vol. 19, No. 4, 1997, pp. 329–340.10.1016/S0958-9465(97)00036-X
  20. [20] J. D. R. Joseph, J. Prabakar, and P. Alagusundaramoorth: Flexural Behavior of Precast Concrete Sandwich Panels Under Different Loading Conditions such as Punching and Bending. Alexandria Eng. J., vol. Vol. 57, pp. 309–320, 2018. http://dx.doi.org/10.1016/j.aej.2016.11.016.10.1016/j.aej.2016.11.016
  21. [21] ACI 318R-14.: Building code requirements for structural concrete : ACI Committee 318, 2014.
  22. [22] BIRKLE, G. - DILGER, W.: Influence of slab thickness on punching shear strength. ACI Struct. J., Vol. 105, 2008, pp. 180–188.10.14359/19733
  23. [23] URBAN, T. - GOŁDYN, M. - KRAKOWSKI, J. - KRAWCZYK, Ł.: Experimental Investigation on Punching Behavior of Thick Reinforced Concrete Slabs. Arch. Civ. Eng., Vol. 59, No. 2, 2013, pp. 157–174. doi: https://doi.org/10.2478/ace-2013-0008.10.2478/ace-2013-0008
  24. [24] SNI 03-2847-2013, Persyaratan Beton Struktural untuk gedung. (in English: Structural Concrete Requirement for Building) Jakarta: Badan Standarisasi Nasional (BSN), 2013.
  25. [25] JOMAA’H, M. - KHAZAAL, A. - AHMED, S.: Effect of replacing the main reinforcement by steel fibers on flexural behavior of one-way concrete slabs. MATEC Web Conf., Vol. 162, Jan. 2018, pp. 1-9. doi: 10.1051/matecconf/201816204010.10.1051/matecconf/201816204010
DOI: https://doi.org/10.2478/cee-2021-0006 | Journal eISSN: 2199-6512 | Journal ISSN: 1336-5835
Language: English
Page range: 50 - 57
Published on: Jun 22, 2021
Published by: University of Žilina
In partnership with: Paradigm Publishing Services
Publication frequency: 2 issues per year

© 2021 Mochamad Solikin, Muhammad Fajrul Falah, Sri Sunarjono, Nurul Hidayati, Suhendro Trinugroho, Muslich Hartadi Sutanto, Muhammad Noor Asnan, published by University of Žilina
This work is licensed under the Creative Commons Attribution 4.0 License.