Have a personal or library account? Click to login
Microwave-Aided Nitration of Phenol with Inorganic Nitrates: Inquiry-Based Learning Experiments Cover

Microwave-Aided Nitration of Phenol with Inorganic Nitrates: Inquiry-Based Learning Experiments

Open Access
|Feb 2025

References

  1. Roll I, Wylie R. Evolution and revolution in artificial intelligence in education. Int J Artif Intell Educ. 2016;26:582-99. DOI: 10.1007/s40593-016-0110-3.
  2. Jafari F, Keykha A. Identifying the opportunities and challenges of artificial intelligence in higher education: a qualitative study. J Appl Res High Educ. 2024;16:1228-45. DOI: 10.1108/JARHE-09-2023-0426.
  3. Collins N, Stout D, Lim JP, Malerich JP, White JD, Madrid PB, et al. Fully automated chemical synthesis: toward the universal synthesizer. Org Process Res Dev. 2020;24:2064-77. DOI: 10.1021/acs.oprd.0c00143.
  4. Song E, Xie Z, Bai W, Luan H, Ji B, Ning X, et al. Miniaturized electromechanical devices for the characterization of the biomechanics of deep tissue. Nat Biomed Eng. 2021;5:759-71. DOI: 10.1038/s41551-021-00723-y.
  5. Liu J, Gao X, Jin H, Ren K, Guo J, Qiao L, et al. Miniaturized electromechanical devices with multi-vibration modes achieved by orderly stacked structure with piezoelectric strain units. Nat Commun. 2022;13:6567. DOI: 10.1038/s41467-022-34231-7.
  6. Kotsis KT. Teaching physics in the kitchen: bridging science education and everyday life. EIKI J Eff Teach Methods. 2024;2. DOI: 10.59652/jetm.v2i1.109.
  7. Ferreira JPM. How a soup bowl and a coffee cup cool down. Phys Educ. 2024;59:055020. DOI: 10.1088/1361-6552/ad6ac9.
  8. Linkwitz M, Zidny R, Nida S, Seeger L, Belova N, Eilks I. Simple green organic chemistry experiments with the kitchen microwave for high school chemistry classrooms. Chem Teach Int. 2022;4:165-72. DOI: 10.1515/cti-2021-0034.
  9. Cresswell SL, Haswell SJ. Microwave ovens - out of the kitchen. J Chem Educ. 2001;78:900. DOI: 10.1021/ed078p900.
  10. Villemin D, Thibault-Starzyk F. Domestic microwave ovens in the laboratory. J Chem Educ. 1991;68:346. DOI: 10.1021/ed068p346.
  11. Watkins KW. Heating in microwave ovens: An example of dipole moments in action. J Chem Educ. 1983;60:1043. DOI: 10.1021/ed060p1043.
  12. Martin E, Kellen-Yuen C. Microwave-assisted organic synthesis in the organic teaching lab: A simple, greener wittig reaction. J Chem Educ. 2007;84:2004. DOI: 10.1021/ed084p2004.
  13. Damkaci F, Dallas M, Wagner M. A microwave-assisted friedel-crafts acylation of toluene with anhydrides. J Chem Educ. 2013;90:390-2. DOI: 10.1021/ed200479n.
  14. Baar MR. Research experience for the organic chemistry laboratory: A student-centered optimization of a microwave-enhanced Williamson ether synthesis and GC analysis. J Chem Educ. 2018;95:1235-7. DOI: 10.1021/acs.jchemed.7b00592.
  15. Kappe CO, Dallinger D. The impact of microwave synthesis on drug discovery. Nat Rev Drug Discov. 2006;5:51-63. DOI: 10.1038/nrd1926.
  16. Liu Z, Zhang L, Wang R, Poyraz S, Cook J, Bozack MJ, et al. Ultrafast microwave nano-manufacturing of fullerene-like metal chalcogenides. Sci Rep. 2016;6:22503. DOI: 10.1038/srep22503.
  17. Nguyen PN, Nguyen GLN, Duong TAT, Le MPT, Nguyen LP, Kim J, et al. High-yield, fast, and green synthesis of acridine derivatives using a Co/C catalyst from rice husks with a microwave-assisted method. React Chem Eng. 2024;9:2034-49. DOI: 10.1039/D4RE00065J.
  18. Perreux L, Loupy A, Volatron F. Solvent-free preparation of amides from acids and primary amines under microwave irradiation. Tetrahedron. 2002;58:2155-62. DOI: 10.1016/S0040-4020(02)00085-6.
  19. Lima RN, Silva VR, Santos L de S, Bezerra DP, Soares MBP, Porto ALM. Fast synthesis of amides from ethyl salicylate under microwave radiation in a solvent-free system. RSC Adv. 2017;7:56566-74. DOI: 10.1039/C7RA11434F.
  20. Wang XJ, Yang Q, Liu F, You QD. Microwave‐assisted synthesis of amide under solvent‐free conditions. Synth Commun. 2008. DOI: 10.1080/00397910701860372.
  21. Zarecki AP, Kolanowski JL, Markiewicz WT. Microwave-assisted catalytic method for a green synthesis of amides directly from amines and carboxylic acids. Molecules. 2020;25:1761. DOI: 10.3390/molecules25081761.
  22. McCullough T, Kubena K. Beauty or the beast: Nitration of phenol. J Chem Educ. 1990;67:801. DOI: 10.1021/ed067p801.
  23. Zeegers PJ. Nitration of phenols: A two-phase system. J Chem Educ. 1993;70:1036. DOI: 10.1021/ed070p1036.
  24. Bose AK, Ganguly SN, Manhas MS, Rao S, Speck J, Pekelny U, et al. Microwave promoted rapid nitration of phenolic compounds with calcium nitrate. Tetrahedron Lett. 2006;47:1885-8. DOI: 10.1016/j.tetlet.2006.01.094.
  25. Yadav U, Mande H, Ghalsasi P. Nitration of phenols using Cu(NO3)2: Green chemistry laboratory experiment. J Chem Educ. 2012;89:268-70. DOI: 10.1021/ed100957v.
  26. Jegstad KM. Inquiry-based chemistry education: A systematic review. Stud Sci Educ. 2024;60:251-313. DOI: 10.1080/03057267.2023.2248436.
  27. Havlíček J, Myška K, Tejchman W, Karásková N, Doležal R, Maltsevskaya NV, et al. Microwave synthesis of sulfanilic acid. Chem-Didact-Ecol-Metrol. 2017;22:93-8. DOI: 10.1515/cdem-2017-0005.
  28. Mycak M, Doležal R, Bílek M, Kolář K. Microwave-aided reactions of aniline derivatives with formic acid: Inquiry-based learning experiments. Chem-Didact-Ecol-Metrol. 2022;27:135-51. DOI: 10.2478/cdem-2022-0008.
  29. Gawley RE. A proposal for (slight) modification of the hughes-ingold mechanistic descriptors for substitution reactions. Tetrahedron Lett. 1999;40:4297-300. DOI: 10.1016/S0040-4039(99)00780-7.
  30. Esteves PM, de M. Carneiro JW, Cardoso SP, Barbosa AGH, Laali KK, Rasul G, et al. Unified mechanistic concept of electrophilic aromatic nitration:  Convergence of computational results and experimental data. J Am Chem Soc. 2003;125:4836-49. DOI: 10.1021/ja021307w.
  31. McMurry JE. Organická chemie (Organic Chemistry). Brno-Praha: VUTIUM-VŠCHT; 2007. ISBN: 9788021432918.
  32. Smith MB. March’s Advanced Organic Chemistry: Reactions, Mechanisms, and Structure. John Wiley Sons; 2020. ISBN: 9781119371809.
  33. Ridd JH. Mechanism of aromatic nitration. Acc Chem Res. 1971;4:248-53. DOI: 10.1021/ar50043a003.
  34. Johnstone AH. You can’t get there from here. J Chem Educ. 2010;87:22-9. DOI: 10.1021/ed800026d.
  35. Hudlický M. Reactions of Organic Fluorine Compounds. In: Hudlický M, editor. Organic Fluorine Chemistry, Boston MA: Springer US; 1971. DOI: 10.1007/978-1-4615-8642-5_8.
  36. Michael A, Carlson GH. On the Mechanism of the nitration process. J Am Chem Soc. 1935;57:1268-76. DOI: 10.1021/ja01310a028.
  37. Mellor JM, Mittoo S, Parkes R, Millar RW. Improved nitrations using metal nitrate-sulfuric acid systems. Tetrahedron. 2000;56:8019-24. DOI: 10.1016/S0040-4020(00)00720-1.
  38. Gillespie RJ, Millen DJ. Aromatic nitration. Q Rev Chem Soc. 1948;2:277-306. DOI: 10.1039/QR9480200277.
  39. Vekariya RH, Patel HD. Selective nitration of phenolic compounds by green synthetic approaches. Synth Commun. 2014;44:2313-35. DOI: 10.1080/00397911.2014.896925.
  40. Dinçtürk SH, Ridd J. Reactions of cerium( IV ) ammonium nitrate with aromatic compounds in acetonitrile. Part 2. Nitration; comparison with reactions of nitric acid. J Chem Soc Perkin Trans 2. 1982;0:965-9. DOI: 10.1039/P29820000965.
  41. Jacoway J, Kumar GGKSN, Laali KK. Aromatic nitration with bismuth nitrate in ionic liquids and in molecular solvents: a comparative study of Bi(NO3)3·5H2O/[bmim][PF6] and Bi(NO3)3·5H2O/1,2-DCE systems. Tetrahedron Lett. 2012;53:6782-5. DOI: 10.1016/j.tetlet.2012.09.137.
  42. Gao M, Ye R, Shen W, Xu B. Copper nitrate: a privileged reagent for organic synthesis. Org Biomol Chem. 2018;16:2602-18. DOI: 10.1039/C8OB00332G.
  43. Trammell R, Rajabimoghadam K, Garcia-Bosch I. Copper-promoted functionalization of organic molecules: From biologically relevant Cu/O2 model systems to organometallic transformations. Chem Rev. 2019;119:2954-3031. DOI: 10.1021/acs.chemrev.8b00368.
  44. Dou Y, Yin B, Zhang P, Zhu Q. Copper-catalyzed regioselective nitration and azidation of 1-naphthylamine derivatives via remote C-H activation. Eur J Org Chem. 2018;2018:4571-6. DOI: 10.1002/ejoc.201800912.
  45. Sadhu P, Alla SK, Punniyamurthy T. Room-temperature Cu(II)-catalyzed chemo- and regioselective ortho-nitration of arenes via C-H functionalization. J Org Chem. 2015;80:8245-53. DOI: 10.1021/acs.joc.5b01021.
  46. Menke JB. Nitrieren mit Nitraten. Recl Trav Chim Pays-Bas. 1925;44:141-9. DOI: 10.1002/recl.19250440209.
  47. Hoggett JG, Moodie RB, Schofield K. The duality of mechanism for nitration in acetic anhydride. J Chem Soc Chem Commun. 1969:605-6. DOI: 10.1039/C29690000605.
  48. Frogley BJ, Dalebrook AF, Wright LJ. Regioselective nitration and/or halogenation of iridabenzofurans through electrophilic substitution. Organometallics. 2016;35:400-9. DOI: 10.1021/acs.organomet.5b00981.
  49. Steele BA, Zhang MX, Kuo IFW. Single-step mechanism for regioselective nitration of 9,10-BN-naphthalene with acetyl nitrate in the gas phase. J Phys Chem A. 2022;126:5089-98. DOI: 10.1021/acs.jpca.2c02124.
  50. Eberson L, Radner F. Electron-transfer mechanisms in electrophilic aromatic nitration. Acc Chem Res. 1987;20:53-9. DOI: 10.1021/ar00134a002.
  51. Olah GA, Ramaiah P, Prakash GKS. Electrophilic nitration of alkanes with nitronium hexafluorophosphate. Proc Natl Acad Sci. 1997;94:11783-5. DOI: 10.1073/pnas.94.22.11783.
  52. Ganguly NC, Datta M, De P, Chakravarty R. Studies on regioselectivity of nitration of coumarins with cerium(IV) ammonium nitrate: Solid-state nitration of 6-hydroxy-coumarins on montmorillonite K-10 Clay support under microwave irradiation. Synth Commun. 2003;33:647-59. DOI: 10.1081/SCC-120015821.
  53. Cornelis A, Laszlo P. Clay-supported copper(II) and iron(III) nitrates: Novel multi-purpose reagents for organic synthesis. Synth Ger. 1985;1985:909-18. DOI: 10.1055/s-1985-31382.
  54. Balogh M, Pennetreau P, Hermecz I, Gerstmans A. Nitrogen bridgehead compounds. Part 78. Clay-supported iron(III) nitrate: a multifunctional reagent. Oxidation and nitration of nitrogen bridgehead compounds. J Org Chem. 1990;55:6198-202. DOI: 10.1021/jo00312a030.
  55. Gigante B, Prazeres AO, Marcelo-Curto MJ, Cornelis A, Laszlo P. Mild and selective nitration by claycop. J Org Chem. 1995;60:3445-7. DOI: 10.1021/jo00116a034.
  56. McElveen SR, Gavardinas K, Stamberger JA, Mohan RS. The discovery-oriented approach to organic chemistry. 1. Nitration of unknown organic compounds. An exercise in 1H NMR and 13C NMR spectrosopy for sophomore organic laboratories. J Chem Educ. 1999;76:535. DOI: 10.1021/ed076p535.
  57. Wieder MJ, Barrows R. A nitration reaction puzzle for the organic chemistry laboratory. J Chem Educ. 2008;85:549. DOI: 10.1021/ed085p549.
  58. Zakaria Z, Latip J, Tantayanon S. Organic chemistry practices for undergraduates using a small lab kit. Procedia - Soc Behav Sci. 2012;59:508-14. DOI: 10.1016/j.sbspro.2012.09.307.
  59. Chen HJ, She JL, Chou CC, Tsai YM, Chiu MH. Development and application of a scoring rubric for evaluating students’ experimental skills in organic chemistry: An instructional guide for teaching assistants. J Chem Educ. 2013;90:1296-302. DOI: 10.1021/ed101111g.
  60. Fishback V, Reid B, Schildkret A. Three modules incorporating cost analysis, green principles, and metrics for a sophomore organic chemistry laboratory. Green Chemistry Experiments in Undergraduate Laboratories, vol. 1233, Am Chem Soc; 2016. DOI: 10.1021/bk-2016-1233.ch003.
  61. Kolář K. Reakce fenolu s oxidy dusíku na tenké vrstvě [Reaction of phenol with nitrogen oxides on thin layers]. Biol Chem Zeměp. 1998;7:124-5. ISSN 1210-3349.
  62. Smith K, El-Hiti GA. Use of zeolites for greener and more para-selective electrophilic aromatic substitution reactions. Green Chem. 2011;13:1579-608. DOI: 10.1039/C0GC00689K.
  63. Anastas P, Warner J. Green Chemistry: Theory and Practice. Oxford, New York: Oxford University Press; 2000. ISBN: 9780198506980.
  64. Rodrigues GD, de Lemos LR, da Silva LHM, da Silva M do CH, Minim LA, Coimbra JS dos R. A green and sensitive method to determine phenols in water and wastewater samples using an aqueous two-phase system. Talanta. 2010;80:1139-44. DOI: 10.1016/j.talanta.2009.08.039.
  65. Hao L, Ding G, Deming DA, Zhang Q. Recent advances in green synthesis of functionalized phenols from aromatic boronic compounds. Eur J Org Chem. 2019;2019:7307-21. DOI: 10.1002/ejoc.201901303.
  66. Elumalai V, Hansen JH. A scalable and green one-minute synthesis of substituted phenols. RSC Adv. 2020;10:40582-7. DOI: 10.1039/D0RA08580D.
  67. Ryan RM, Deci EL. Self-determination theory and the facilitation of intrinsic motivation, social development, and well-being. Am Psychol. 2000;55:68-78. DOI: 10.1037/0003-066X.55.1.68.
  68. Vojíř K, Honskusová L, Rusek M, Kolář K. Nitrace aromatických sloučenin v badatelsky orientovaném vyučování (Aromatic compounds nitration in IBSE). Project-Based Education and other Activating Strategies in Science Education XVI. PBE 2018, Prague: Faculty of Education, Charles University; 2019. ISBN: 9788076030664.
DOI: https://doi.org/10.2478/cdem-2024-0005 | Journal eISSN: 2084-4506 | Journal ISSN: 1640-9019
Language: English
Page range: 65 - 83
Published on: Feb 5, 2025
In partnership with: Paradigm Publishing Services
Publication frequency: 2 issues per year
Related subjects:

© 2025 Zuzana Morávková, Jiří Havlíček, Rafael Doležal, Martin Bílek, Karel Kolář, published by Society of Ecological Chemistry and Engineering
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.