Have a personal or library account? Click to login
A novel LAPN algorithm based path navigation approach for autonomous agents Cover

A novel LAPN algorithm based path navigation approach for autonomous agents

Open Access
|Dec 2025

References

  1. Antipov, A., Kokunko, J. and Krasnova, S. (2022) Dynamic models design for processing motion reference signals for mobile robots. J. Intell. Robot Syst. 105:77.
  2. Artunedo, A., Villagra, J., Godoy, J. and Castillo, M. D. (2020) Motion Planning Approach Considering Localization Uncertainty. IEEE Trans. Veh. Technol. 69(6):5983–5994.
  3. Bhowmick, S. and Panja, S. (2019) Leader–Follower Bipartite Consensus of Linear Multiagent Systems Over a Signed Directed Graph. IEEE Trans. Circuits Syst. II Express Briefs, 66(8):1436–1440.
  4. Biundini, I. Z., Melo, A. G., Coelho, F. O., Honório, L. M., Marcato, A. L. M. and Pinto, M. F. (2022) Experimentation and simulation with autonomous coverage path planning for UAVs. J. Intell. Robot Syst. 105:46.
  5. Chandra, R., Maligi, R., Anantula, A. and Biswas, J. (2023) SocialMapf: Optimal and E cient Multi-Agent Path Finding With Strategic Agents for Social Navigation. IEEE Robot. Autom. Lett. 8(6):3214–3221. doi:10.1109/LRA.2023.3265169.
  6. Chi, W., Wang, C., Wang, J. and Meng, M. Q-H. (2019) Risk-DTRRT-Based Optimal Motion Planning Algorithm for Mobile Robots. IEEE Trans. Autom. Sci. Eng. 16(3):1271–1288.
  7. Chung, J., Fayyad, J., Younes, Y. A. et al. (2024) Learning team-based navigation: a review of deep reinforcement learning techniques for multi-agent pathfinding. Artif. Intell. Rev. 57:41. doi:10.1007/s10462-023-10670-6.
  8. Feng, S., Zhang, G., Dong, Y., Zhang, X. and Wang, P. (2018) Improved line of sight robot tracking toward a moving target. Syst. Sci. Control Eng. 6(3):227–234.
  9. Fitzpatrick, M., Reis, G. M., Anderson, J., Bobadilla, L., Al Sabban, W. and Smith, R. N. (2020) Development of environmental niche models for use in underwater vehicle navigation. IET Cyber-Syst. Robot. 2(2):67–77.
  10. Ho, F., Geraldes, R., Gonçalves, A., Cavazza, M. and Prendinger, H. (2019) Improved Conflict Detection and Resolution for Service UAVs in Shared Airspace. IEEE Trans. Veh. Technol. 68(2):1231–1242.
  11. Hu, A., Park, J. H. and Cao, J. (2020) Node-to-node bipartite consensus of multi-agent systems with disturbances. IET Control Theory Appl. 14(13):1692–1699.
  12. Huang, C., Xu, T. and Wu, X. (2024) Leader–Follower formation Control of magnetically actuated millirobots for automatic navigation. IEEE/ASME Trans. Mech. 29(2):1272–1282.
  13. Huang, D., Yang, C., Li, M., Huang, H. and Li, Y. (2023) Motion regulation solutions to holding and moving an object for Single-Leader-Dual-Follower teleoperation. IEEE Trans. Ind. Inf. 19(10):10170–10181.
  14. Ilker, U. and Topakci, M. (2015) Design of a remote-controlled and GPS-guided autonomous robot for precision farming. Int. J. Adv. Robot. Syst. 12(12):1–10.
  15. Jiang, A., Yao, X. and Zhou, J. (2018) Research on path planning of real-time obstacle avoidance of mechanical arm based on genetic algorithm. J. Eng. 2018(16):1579–1586.
  16. Kamil, F., Hong, T. S., Khaksar, W., Moghrabiah, M. Y., Zulkifli, N. and Ahmad, S. A. (2017) New robot navigation algorithm for arbitrary unknown dynamic environments based on future prediction and priority behavior. Expert Syst. Appl. 86(15):274–291.
  17. Magnago, V., Palopoli, L., Passerone, R., Fontanelli, D. and Macii, D. (2019) Effective Landmark Placement for Robot Indoor Localization with Position Uncertainty Constraints. IEEE Trans. Instrum. Meas. 68(11):4443–4455..
  18. Mukherjee, S., Kumar, R. and Borah, S. (2020a) Obstacle-avoiding intelligent algorithm for quad wheel robot path navigation. Int. J. Intell. Unmanned Syst. 9(1):29–41.
  19. Mukherjee, S., Kumar, R. and Borah, S. (2020b) Computational Study of DFMB Algorithm for Unmanned Vehicle in Static 2D Environment. In: 2020 IEEE Int. Conf. Comput. Performance Evaluation (ComPE), 126–131.
  20. Mukherjee, S., Kumar, R., Borah, S. and Bhattacharjee, R. (2020) An Enhanced Experimental Study of GPS Based Path Tracking Nonholonomic Robot with SAWOA Algorithm. In: 2020 IEEE Int. Conf. Comput. Sci., Eng. Appl. (ICCSEA), 1–5.
  21. Ngo, H. Q. T., Le, V. N., Thien, V. D. N., Nguyen, T. P. and Nguyen, H. (2024) Develop the socially human-aware navigation system using dynamic window approach and optimize cost function for autonomous medical robot. Adv. Mech. Eng. 12(12). doi:10.1177/1687814020979430.
  22. Ning, J., Zhang, Q., Zhang, C. and Zhang, B. (2018) A best-path-updating information-guided ant colony optimization algorithm. Inf. Sci. 433-434:142–162.
  23. Raja, G., Essaky, S., Ganapathisubramaniyan, A. and Baskar, Y. (2023) Nexus of deep reinforcement learning and Leader–Follower approach for AIOT enabled aerial networks. IEEE Trans. Ind. Inf. 19(8): 9165–9172.
  24. Rath, A. K., Parhi, D. R., Das, H. C., Muni, M. K. and Kumar, P. B. (2018) Analysis and use of fuzzy intelligent technique for navigation of humanoid robot in obstacle prone zone. Def. Technol. 14(6):677–682.
  25. Sebastian, B. and Ben-Tzvi, P. (2019) Physics Based Path Planning for Autonomous Tracked Vehicle in Challenging Terrain. J. Intell. Robot. Syst. 95:511–526.
  26. Shahriari, M. and Biglarbegian, M. (2022) Toward Safer Navigation of Heterogeneous Mobile Robots in Distributed Scheme: A Novel Time-to-Collision-Based Method. IEEE Trans. Cybern. 52:9302–9315.
  27. Sun, C., He, W., Ge, W. and Chang, C. (2017) Adaptive Neural Network Control of Biped Robots. IEEE Trans. Syst. Man Cybern. Syst. 47(2):315–326.
  28. Wang, S. and Huang, J. (2019) Adaptive Leader-Following Consensus for Multiple Euler–Lagrange Systems With an Uncertain Leader System. IE EE Trans. Neural Netw. Learn. Syst. 30(7):2188–2196.
  29. Wang, X., Liu, W., Wu, Q. and Li, S. (2022) A modular optimal formation control scheme of multi-agent systems with application to multiple mobile robots. IEEE Trans. Ind. Electron. 69:9331–9341.
  30. Wen, L., Liu, Y. and Li, H. (2022) CL-MAPF: Multi-agent path finding for car-like robots with kinematic and spatiotemporal constraints. Robot. Auton. Syst. 150:103997.
  31. Yang, H., Qi, J., Miao, Y., Sun, H. and Li, J. (2019) A New Robot Navigation Algorithm Based on a Double-Layer Ant Algorithm and Trajectory Optimization. IEEE Trans. Ind. Electron. 66(11):8557–8566.
  32. Yin, J., Luo, D., Yan, F. and Zhuang, Y. (2022) A novel lidar-assisted monocular visual SLAM framework for mobile robots in outdoor environments. IEEE Trans. Instrum. Meas. 71:1–11.
  33. Zhang, H., Zhao, W., Xie. X. and Yue, D. (2024) Dynamic Leader–Follower output containment control of heterogeneous multiagent systems using reinforcement learning. IEEE Trans. Syst. Man Cybern. Syst. 2024:1–10.
  34. Zhao, K. and Ning, L. (2022) Hybrid navigation method for multiple robots facing dynamic obstacles. Tsinghua Sci. Technol. 27:894–901.
DOI: https://doi.org/10.2478/candc-2025-0008 | Journal eISSN: 2720-4278 | Journal ISSN: 0324-8569
Language: English
Page range: 223 - 253
Submitted on: Sep 1, 2024
|
Accepted on: Oct 1, 2025
|
Published on: Dec 21, 2025
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2025 Subhradip Mukherjee, published by Systems Research Institute Polish Academy of Sciences
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.