References
- A
ntipov , A., Kokunko , J.and Krasnova , S. (2022) Dynamic models design for processing motion reference signals for mobile robots. J. Intell. Robot Syst. 105:77. - A
rtunedo , A., Villagra , J., Godoy , J.and Castillo , M. D. (2020) Motion Planning Approach Considering Localization Uncertainty. IEEE Trans. Veh. Technol. 69(6):5983–5994. - B
howmick , S.and Panja , S. (2019) Leader–Follower Bipartite Consensus of Linear Multiagent Systems Over a Signed Directed Graph. IEEE Trans. Circuits Syst. II Express Briefs, 66(8):1436–1440. - B
iundini , I. Z., Melo , A. G., Coelho , F. O., Honório , L. M., Marcato , A. L. M.and Pinto , M. F. (2022) Experimentation and simulation with autonomous coverage path planning for UAVs. J. Intell. Robot Syst. 105:46. - C
handra , R., Maligi , R., Anantula , A.and Biswas , J. (2023) SocialMapf: Optimal and E cient Multi-Agent Path Finding With Strategic Agents for Social Navigation. IEEE Robot. Autom. Lett. 8(6):3214–3221. doi:10.1109/LRA.2023.3265169. - C
hi , W., Wang , C., Wang , J.and Meng , M. Q-H. (2019) Risk-DTRRT-Based Optimal Motion Planning Algorithm for Mobile Robots. IEEE Trans. Autom. Sci. Eng. 16(3):1271–1288. - C
hung , J., Fayyad , J., Younes , Y. A.et al . (2024) Learning team-based navigation: a review of deep reinforcement learning techniques for multi-agent pathfinding. Artif. Intell. Rev. 57:41. doi:10.1007/s10462-023-10670-6. - F
eng , S., Zhang , G., Dong , Y., Zhang , X.and Wang , P. (2018) Improved line of sight robot tracking toward a moving target. Syst. Sci. Control Eng. 6(3):227–234. - F
itzpatrick , M., Reis , G. M., Anderson , J., Bobadilla , L., Al Sabban , W.and Smith , R. N. (2020) Development of environmental niche models for use in underwater vehicle navigation. IET Cyber-Syst. Robot. 2(2):67–77. - H
o , F., Geraldes , R., Gonçalves , A., Cavazza , M.and Prendinger , H. (2019) Improved Conflict Detection and Resolution for Service UAVs in Shared Airspace. IEEE Trans. Veh. Technol. 68(2):1231–1242. - H
u , A., Park , J. H.and Cao , J. (2020) Node-to-node bipartite consensus of multi-agent systems with disturbances. IET Control Theory Appl. 14(13):1692–1699. - H
uang , C., Xu , T.and Wu , X. (2024) Leader–Follower formation Control of magnetically actuated millirobots for automatic navigation. IEEE/ASME Trans. Mech. 29(2):1272–1282. - H
uang , D., Yang , C., Li , M., Huang , H.and Li , Y. (2023) Motion regulation solutions to holding and moving an object for Single-Leader-Dual-Follower teleoperation. IEEE Trans. Ind. Inf. 19(10):10170–10181. - I
lker , U.and Topakci , M. (2015) Design of a remote-controlled and GPS-guided autonomous robot for precision farming. Int. J. Adv. Robot. Syst. 12(12):1–10. - J
iang , A., Yao , X.and Zhou , J. (2018) Research on path planning of real-time obstacle avoidance of mechanical arm based on genetic algorithm. J. Eng. 2018(16):1579–1586. - K
amil , F., Hong , T. S., Khaksar , W., Moghrabiah , M. Y., Zulkifli , N.and Ahmad , S. A. (2017) New robot navigation algorithm for arbitrary unknown dynamic environments based on future prediction and priority behavior. Expert Syst. Appl. 86(15):274–291. - M
agnago , V., Palopoli , L., Passerone , R., Fontanelli , D.and Macii , D. (2019) Effective Landmark Placement for Robot Indoor Localization with Position Uncertainty Constraints. IEEE Trans. Instrum. Meas. 68(11):4443–4455.. - M
ukherjee , S., Kumar , R.and Borah , S. (2020a) Obstacle-avoiding intelligent algorithm for quad wheel robot path navigation. Int. J. Intell. Unmanned Syst. 9(1):29–41. - M
ukherjee , S., Kumar , R.and Borah , S. (2020b) Computational Study of DFMB Algorithm for Unmanned Vehicle in Static 2D Environment. In: 2020 IEEE Int. Conf. Comput. Performance Evaluation (ComPE), 126–131. - M
ukherjee , S., Kumar , R., Borah , S.and Bhattacharjee , R. (2020) An Enhanced Experimental Study of GPS Based Path Tracking Nonholonomic Robot with SAWOA Algorithm. In: 2020 IEEE Int. Conf. Comput. Sci., Eng. Appl. (ICCSEA), 1–5. - N
go , H. Q. T., Le , V. N., Thien , V. D. N., Nguyen , T. P.and Nguyen , H. (2024) Develop the socially human-aware navigation system using dynamic window approach and optimize cost function for autonomous medical robot. Adv. Mech. Eng. 12(12). doi:10.1177/1687814020979430. - N
ing , J., Zhang , Q., Zhang , C.and Zhang , B. (2018) A best-path-updating information-guided ant colony optimization algorithm. Inf. Sci. 433-434:142–162. - R
aja , G., Essaky , S., Ganapathisubramaniyan , A.and Baskar , Y. (2023) Nexus of deep reinforcement learning and Leader–Follower approach for AIOT enabled aerial networks. IEEE Trans. Ind. Inf. 19(8): 9165–9172. - R
ath , A. K., Parhi , D. R., Das , H. C., Muni , M. K.and Kumar , P. B. (2018) Analysis and use of fuzzy intelligent technique for navigation of humanoid robot in obstacle prone zone. Def. Technol. 14(6):677–682. - S
ebastian , B.and Ben -Tzvi , P. (2019) Physics Based Path Planning for Autonomous Tracked Vehicle in Challenging Terrain. J. Intell. Robot. Syst. 95:511–526. - S
hahriari , M.and Biglarbegian , M. (2022) Toward Safer Navigation of Heterogeneous Mobile Robots in Distributed Scheme: A Novel Time-to-Collision-Based Method. IEEE Trans. Cybern. 52:9302–9315. - S
un , C., He , W., Ge , W.and Chang , C. (2017) Adaptive Neural Network Control of Biped Robots. IEEE Trans. Syst. Man Cybern. Syst. 47(2):315–326. - W
ang , S.and Huang , J. (2019) Adaptive Leader-Following Consensus for Multiple Euler–Lagrange Systems With an Uncertain Leader System. IE EE Trans. Neural Netw. Learn. Syst. 30(7):2188–2196. - W
ang , X., Liu , W., Wu , Q.and Li , S. (2022) A modular optimal formation control scheme of multi-agent systems with application to multiple mobile robots. IEEE Trans. Ind. Electron. 69:9331–9341. - W
en , L., Liu , Y.and Li , H. (2022) CL-MAPF: Multi-agent path finding for car-like robots with kinematic and spatiotemporal constraints. Robot. Auton. Syst. 150:103997. - Y
ang , H., Qi , J., Miao , Y., Sun , H.and Li , J. (2019) A New Robot Navigation Algorithm Based on a Double-Layer Ant Algorithm and Trajectory Optimization. IEEE Trans. Ind. Electron. 66(11):8557–8566. - Y
in , J., Luo , D., Yan , F.and Zhuang , Y. (2022) A novel lidar-assisted monocular visual SLAM framework for mobile robots in outdoor environments. IEEE Trans. Instrum. Meas. 71:1–11. - Z
hang , H., Zhao , W., Xie . X.and Yue , D. (2024) Dynamic Leader–Follower output containment control of heterogeneous multiagent systems using reinforcement learning. IEEE Trans. Syst. Man Cybern. Syst. 2024:1–10. - Z
hao , K.and Ning , L. (2022) Hybrid navigation method for multiple robots facing dynamic obstacles. Tsinghua Sci. Technol. 27:894–901.