Have a personal or library account? Click to login
Edge-Fog-Cloud Distributed Architecture for Intelligent DDoS Detection and Mitigation Cover

Edge-Fog-Cloud Distributed Architecture for Intelligent DDoS Detection and Mitigation

Open Access
|Dec 2025

References

  1. Sharafaldin, I., A. H. Lashkari, S. Hakak, A. A. Ghorbani. Developing a Realistic Distributed Denial of Service (DDoS) Attack Dataset and Taxonomy. – In: Proc. of 53rd International Carnahan Conference on Security Technology, Chennai, India, 2019, IEEE, 2019.
  2. AlSaleh, I., A. Al-Samawi, L. Nissirat. Novel Machine Learning Approach for DDoS Cloud Detection: Bayesian-Based CNN and Data Fusion Enhancements. – Sensors, Vol. 24, 2024, No 5, 1418.
  3. Ec-Sabery, M., A. B. Abbou, A. Boushaba, F. Mrabti, R. B. Abbou. The Optimized Extreme Learning Machine (GA-OELM) for DDoS Attack Detection in a Cloud Environment. – Journal of Computer Science, Vol. 21, 2025, No 1, pp. 146-157.
  4. Songa, A. V., G. R. Karri. An Integrated SDN Framework for Early Detection of DDoS Attacks in Cloud Computing. – Journal of Cloud Computing, Vol. 13, 2024, 64.
  5. Amitha, M., M. Srivenkatesh. DDoS Attack Detection in Cloud Computing Using Deep Learning Algorithms. – International Journal of Intelligent Systems and Applications in Engineering, Vol. 11, 2023, No 4, pp. 82-90.
  6. Gudla, S. P. K., S. K. Bhoi, S. R. Nayak, A. Verma. DI-ADS: A Deep Intelligent Distributed Denial of Service Attack Detection Scheme for Fog-Based IoT Applications. – Computational Intelligence and Neuroscience, Vol. 2022, 2022, pp. 1-17.
  7. Bensaid, R., N. Labraoui, A. A. A. Ari, L. Maglaras, H. Saidi, A. M. A. Lwahhab, S. Benfriha. Toward a Real-Time TCP SYN Flood DDoS Mitigation Using an Adaptive Neuro-Fuzzy Classifier and SDN Assistance in Fog Computing. – Security and Communication Networks, Vol. 2023, 2023, 6651584.
  8. Pokale, N. B., P. Sharma, D. T. Mane. Deep Hybrid Model for Attack Detection in IoT-Fog Architecture with Improved Feature Set and Optimal Training. – In: Web Intelligence, 2024.
  9. Selim, I. M., R. A. Sadek. An Effective Fog-Aware NIDS for DDoS Attack Detection. – IAENG International Journal of Computer Science, Vol. 52, 2025, No 6, pp. 1806-1814.
  10. Kurdi, H., V. Thayananthan. A Multi-Tier MQTT Architecture with Multiple Brokers Based on Fog Computing for Securing Industrial IoT. – Applied Sciences, Vol. 12, 2022, No 7173, pp. 1-15.
  11. Naik, N. Choice of Effective Messaging Protocols for IoT Systems: MQTT, CoAP, AMQP, and HTTP. – In: IEEE International Systems Engineering Symposium (ISSE’17), Vol. 1, 2017, No 7, pp. 1-7.
  12. Tavallaee, M., E. Bagheri, W. Lu, A. Ghorbani. A Detailed Analysis of the KDD Cup 99 Data Set. – In: Proc. of 2nd IEEE Symposium on Computational Intelligence for Security and Defense Applications. IEEE, 2009.
  13. Divekar, A., M. Parekh, V. Savla, M. Shirole. Benchmarking Datasets for Anomaly-Based Network Intrusion Detection: KDD Cup 99 Alternatives. – In: Proc. of IEEE International Conference on Computing, Communication and Security, Kathmandu, Nepal, 2018, IEEE, 2018.
  14. Sharafaldin, I., A. H. Lashkari, S. Hakak, A. A. Ghorbani. Toward Generating a New Intrusion Detection Dataset and Intrusion Traffic Characterization. – In: Proc. of 4th International Conference on Information Systems Security and Privacy (ICISSP’18), Portugal, 2018, Scitepress, 2018.
  15. Ferri, C., J. Hernandez-Orallo, R. Modroiu. An Experimental Comparison of Performance Measures for Classification. – Pattern Recognition Letters, Vol. 30, 2009, No 1, pp. 27-38.
  16. Gamage, S., J. Samarabandu. Deep Learning Methods in Network Intrusion Detection: A Survey and an Objective Comparison. – Pattern Recognition Letters, Vol. 169, 2020, No 2.
  17. Gubta, B. B., M. Misra, R. C. Joshi. An ISP-Level Solution to Combat DDoS Attacks Using a Combined Statistical-Based Approach. – International Journal of Information Assurance and Security, Vol. 3, 2008, No 2, pp. 102-110.
  18. Jisa, D., T. Siza. Efficient DDoS Flood Attack Detection Using Dynamic Thresholding on Flow-Based Network Traffic. – Computers and Security, Vol. 82, 2019, pp. 284-295.
  19. Azahrani, R. J., A. Azahrani. Security Analysis of DDoS Attacks Using Machine Learning Algorithms in Network Traffic. – Electronics, Vol. 10, 2021, No 23.
  20. Gaur, V., R. Kumar. Analysis of Machine Learning Classifiers for Early Detection of DDoS Attacks on IoT Devices. – Arabian Journal for Science and Engineering, Vol. 47, 2022, pp. 1353-1374.
  21. Wijnhoven, R. G. J., P. H. N. de With. Fast Training of Object Detection Using Stochastic Gradient Descent. – In: Proc. of 20th International Conference on Pattern Recognition, Istanbul, Turkey, 2010, IEEE, 2010.
  22. Probst, P., M. N. Wright, A.-L. Boulesteix. Hyperparameters and Tuning Strategies for Random Forest. – WIREs Data Mining and Knowledge Discovery, Vol. 9, 2019, No 3.
  23. Zou, Q., S. Xie, Z. Lin, M. Wu, Y. Ju. Finding the Best Classification Threshold in an Imbalanced Classification. – Big Data Research, Vol. 5, 2016, pp. 2-8.
  24. Jimin, L., Z. Jianye, Z. Huiqi, D. Xueyu, G. Xin. An Improved Random Forest Intrusion Detection Model Based on Tent Mapping. – In: Proc. of 4th World Symposium on Artificial Intelligence, Jilin, China, 2022. IEEE, 2022.
  25. Barona, R., E. Baburaj. An Efficient DDoS Attack Detection and Categorization Using an Adolescent Identity Search-Based Weighted SVM Model. – Peer-to-Peer Networking and Applications, Vol. 16, 2023, No 2, pp. 1227-1241.
  26. Faker, O., E. Dogdu. Intrusion Detection Using Big Data and Deep Learning Techniques. – In: Proc. of 2019 ACM SouthEast Conference (ACM SE’19), ACM, April 2019.
  27. Banerjee, C., T. Mukherjee, E. Pasiliao. An Empirical Study on Generalizations of the ReLU Activation Function. – In: Proc. of 2019 ACM SouthEast Conference (ACM SE’19), ACM, April 2019.
  28. Akhilesh, A. W., K. S. Brijesh. Performance Analysis of Sigmoid and ReLU Activation Functions in a Deep Neural Network. – In: A. Sheth, A. Sinhal, A. Shrivastava, A. K. Pandey, Eds. Intelligent Systems, Algorithms for Intelligent Systems, Springer, 2021, pp. 39-52.
  29. Jadon, S. A Survey of Loss Functions for Semantic Segmentation. – In: Proc. of IEEE Conference on Computational Intelligence in Bioinformatics and Computational Biology (CIBCB’20), Via del Mar, Chile, 2020, IEEE, 2020.
  30. Zaheer, R., S. Humera. A Study of the Optimization Algorithms in Deep Learning. – In: Proc. of 3rd International Conference on Inventive Systems and Control (ICISC’19), Coimbatore, India, 2019, IEEE, 2019.
  31. Qian, N. On the Momentum Term in Gradient Descent Learning Algorithms. – Neural Networks, Vol. 12, 1999, No 1, pp. 145-151.
  32. Sutskever, I., J. Martens, G. Dahl, G. Hinton. On the Importance of Initialization and Momentum in Deep Learning. – In: Proc. of 30th International Conference on International Conference on Machine Learning (ICML’13), ACM, 2013.
  33. Shaikh, J., T. A. Syed, S. A. Shah, S. Jan, Q. Ul Ain, P. K. Singh. Advancing DDoS Attack Detection with Hybrid Deep Learning: Integrating Convolutional Neural Networks, PCA, and Vision Transformers. – International Journal on Smart Sensing and Intelligent Systems, Vol. 17, 2024, No 1, pp. 1-16.
  34. Mehmood, S., R. Amin, J. Mustafa, M. Hussain, F. S. Alsubaei, M. D. Zakaria. Distributed Denial of Services (DDoS) Attack Detection in SDN Using Optimizer-Equipped CNN-MLP. – PLOS ONE, Vol. 20, 2025, No 1.
  35. AlSaleh, I., A. Al-Samawi, L. Nissirat. Novel Machine-Learning Approach for DDoS Cloud Detection: Bayesian-Based CNN and Data Fusion Enhancements. – Sensors, Vol. 24, 2024, No 5, 1418.
  36. Abdullah, E., K. Yildiz. Detection of DDoS Attacks with Feed-Forward Based Deep Neural Network Model. – Expert Systems with Applications, Vol. 486, 2021, No 3, pp. 75-174.
DOI: https://doi.org/10.2478/cait-2025-0034 | Journal eISSN: 1314-4081 | Journal ISSN: 1311-9702
Language: English
Page range: 78 - 97
Submitted on: Sep 16, 2025
Accepted on: Nov 6, 2025
Published on: Dec 11, 2025
Published by: Bulgarian Academy of Sciences, Institute of Information and Communication Technologies
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2025 Hedjaz Sabrine, Baadache Abderrahmane, Semchedine Fouzi, published by Bulgarian Academy of Sciences, Institute of Information and Communication Technologies
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.