References
- Agarap, A. F. Deep Learning Using Rectified Linear Units (RELU). – ArXiv, abs/1803.08375, 2018.
- Banerjee, C., T. Mukherjee, E. L. Pasiliao. An Empirical Study on Generalizations of the RELU Activation Function. – In: Proc. of ACM Southeast Conference, 2019.
- Gustavo, E. A., P. A. Batista, R. C. Prati, M. C. Monard. A Study of the Behavior of Several Methods for Balancing Machine Learning Training Data. – SIGKDD Explor., Vol. 200, 2004, No 6, pp. 20-29.
- Breiman, L. Stacked Regressions. – Machine Learning, Vol. 24, 2004, pp. 49-64.
- Hemlata Dalmia, C. V., S. S. Nikil, S. Kumar. Churning of Bank Customers Using Supervised Learning. – In: Informations on Elektronics and Communications Engeneering, 2020, pp. 681-691.
- Renato, A. L. L., T. C. Silva, B. M. Tabak. Propension to Customer Churn in a Financial Institution: A Machine Learning Approach. – Neural Computing & Applications, Vol. 34, 2022, pp. 11751-11768.
- Domingos, E., B. Ojeme, O. J. Daramola. Experimental Analysis of Hyperparameters for Deep Learning-Based Churn Prediction in the Banking Sector. – Comput., Vol. 9, 2021, No 34.
- Hassonah, M. A., A. Rodan, A.-K. Al-Tamimi, J. Alsakran. Churn Prediction: A Comparative Study Using KNN and Decision Trees. – In: Proc. of 6th HCT Information Technology Trends (ITT’19), 2019, pp. 182-186.
- He, Benlan, Y. Shi, Q. Wan, X. Zhao. Prediction of Customer Attrition of Commercial Banks Based on SVM Model. – Procedia Computer Science, Vol. 31, 2014, pp. 423-430.
- Bing, Q. H., M. T. Kechadi, B. Buckley, G. Kiernan, E. J. Keogh, T. A. Rashid. A New Feature Set with New Window Techniques for Customer Churn Prediction in Land-Line Telecommunications. – Expert Syst. Appl. Vol. 37, 2010, pp. 3657-3665.
- Kaur, I., J. Kaur. Customer Churn Analysis and Prediction in Banking Industry Using Machine Learning. – In: Proc. of 6th International Conference on Parallel, Distributed and Grid Computing (PDGC’20), 2020, pp. 434-437.
- Kaushik, H., D. Singh, M. Kaur, H. A. Alshazly, A. Zaguia, H. Hamam. Diabetic Retinopathy Diagnosis from Fundus Images Using Stacked Generalization of Deep Models. – IEEE Access, Vol. 9, 2021, pp. 108276-108292.
- Kumar, A. S., D. Chandrakala. An Optimal Churn Prediction Model Using Support Vector Machine with Adaboost. – Int. J. Sci. Res. Comput. Sci. Eng. Inf. Technol, Vol. 2, 2017, No 1, 225-230.
- LeCun, Y., Y. Bengio, G. E. Hinton. Deep Learning. – Nature, Vol. 521, 2015, No 7553, pp. 436-444.
- Massaoudi, M., S. S. Refaat, I. Chihi, M. A. Trabelsi, F. S. Oueslati, H. Abu-Rub. A Novel Stacked Generalization Ensemble-Based Hybrid Lgbm-Xgb-Mlp Model for Short-Term Load Forecasting. – Energy, Vol. 214, 2021, No 3.
- Müller, A., S. Guido. Introduction to Machine Learning with Python: A Guide for Data Scientists. 2016.
- Noda, K., Y. Yamaguchi, K. Nakadai, H. G. Okuno, T. Ogata. Audio-Visual Speech Recognition Using Deep Learning. – Applied Intelligence, Vol. 42, 2014, pp. 722-737.
- Ravi, V., S. Bapi, R. Churn, C.-F. Tsai, Y.-H. Lu, W. Verbeke, D. Martens, C. Mues, B. Baesens, N. Lu, H. Lin, J. Lu, G. Zhang, B. He, Y. Shi, Q. Wan, X. Zhao, K. W. De Bock, D. Van den Poel, H. Lee, Y. Lee, H. S. Cho. A Survey on Customer Churn Prediction Using Machine Learning Techniques. – International Journal of Computer Applications, Vol. 154, 2016, pp. 13-16.
- Russakovsky, O., J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z. Huang, A. Karpathy, A. Khosla, M. S. Bernstein, A. C. Berg, L. Fei-Fei. Imagenet Large Scale Visual Recognition Challenge. – International Journal of Computer Vision, Vol. 115, 2014, pp. 211-252.
- Simonyan, K., A. Zisserman. Very Deep Convolutional Networks for Large-Scale Image Recognition. – CoRR, abs/1409.1556, 2014.
- Simonyan, K., A. Zisserman. Very Deep Convolutional Networks for Large-Scale Image Recognition. – CoRR, abs/1409.1556, 2015.
- Smyth, P., D. H. Wolpert. Stacked Density Estimation. – In: Neural Information Processing Systems Research Gate, 1997.
- Sunkaraneni, T. Bank Turnover Dataset. Online, August 2022.
- Szegedy, C., W. Liu, Y. Jia, P. Sermanet, S. E. Reed, D. Anguelov, D. Erhan, V. Vanhoucke, A. Rabinovich. Going Deeper with Convolutions. – In: Proc. of 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR’14), 2014, pp. 1-9.
- Ting, K. M., I. H. Witten. Issues in Stacked Generalization. – J. Artif. Intell. Res., Vol. 10, 1999, pp. 271-289.
- Ting, K. M., I. H. Witten. Issues in Stacked Generalization. – ArXiv, abs/1105.5466, 2011.
- Tolles, J., W. J. Meurer. Logistic Regression: Relating Patient Characteristics to Outcomes. – JAMA, Vol. 316, 2016, No 5, pp. 533-534.
- Hoang, D. T., N. T. Le, V.-H. Nguyen. Customer Churnprediction in the Banking Sector Using Machine Learning-Based Classification Models. – Interdisciplinary Journal of Information, Knowledge, and Management, 2023.
- Veningston, K., P. V. Rao, C. T. Selvan, M. Ronalda. Investigation on Customer Churn Prediction Using Machine Learning Techniques. – In: Proc. of International Conference on Data Science and Applications, 2021.
- Xu, T., Y. Ma, K. R. Kim. Telecom Churn Prediction System Based on Ensemble Learning Using Feature Grouping. – Applied Science, Vol. 11, 2021.
- Zhang, X., J. J. Zhao, Y. LeCun. Character-Level Convolutional Networks for Text Classification. – In: Advances in Neural Information Processing Systems (NIPS 2015), Vol. 28, 2015.
- Tu, C. Exploratory Analysis of Bank Customer Attrition. Kaggle, 2020. Exploratory Analysis of Bank Customer Attrition. Accessed July 2024.
- Galal, M., S. Rady, M. Aref. Enhancing Customer Churn Prediction in Digital Banking Using Ensemble Modeling. – In: Proc. of 4th IEEE Novel Intelligent and Leading Emerging Sciences Conference (NILES’22), 2022, pp. 21-25.
