Have a personal or library account? Click to login
Multi-Level Machine Learning Model to Improve the Effectiveness of Predicting Customers Churn Banks Cover

Multi-Level Machine Learning Model to Improve the Effectiveness of Predicting Customers Churn Banks

By: Van-Binh Ngo and  Van-Hieu Vu  
Open Access
|Sep 2024

References

  1. Agarap, A. F. Deep Learning Using Rectified Linear Units (RELU). – ArXiv, abs/1803.08375, 2018.
  2. Banerjee, C., T. Mukherjee, E. L. Pasiliao. An Empirical Study on Generalizations of the RELU Activation Function. – In: Proc. of ACM Southeast Conference, 2019.
  3. Gustavo, E. A., P. A. Batista, R. C. Prati, M. C. Monard. A Study of the Behavior of Several Methods for Balancing Machine Learning Training Data. – SIGKDD Explor., Vol. 200, 2004, No 6, pp. 20-29.
  4. Breiman, L. Stacked Regressions. – Machine Learning, Vol. 24, 2004, pp. 49-64.
  5. Hemlata Dalmia, C. V., S. S. Nikil, S. Kumar. Churning of Bank Customers Using Supervised Learning. – In: Informations on Elektronics and Communications Engeneering, 2020, pp. 681-691.
  6. Renato, A. L. L., T. C. Silva, B. M. Tabak. Propension to Customer Churn in a Financial Institution: A Machine Learning Approach. – Neural Computing & Applications, Vol. 34, 2022, pp. 11751-11768.
  7. Domingos, E., B. Ojeme, O. J. Daramola. Experimental Analysis of Hyperparameters for Deep Learning-Based Churn Prediction in the Banking Sector. – Comput., Vol. 9, 2021, No 34.
  8. Hassonah, M. A., A. Rodan, A.-K. Al-Tamimi, J. Alsakran. Churn Prediction: A Comparative Study Using KNN and Decision Trees. – In: Proc. of 6th HCT Information Technology Trends (ITT’19), 2019, pp. 182-186.
  9. He, Benlan, Y. Shi, Q. Wan, X. Zhao. Prediction of Customer Attrition of Commercial Banks Based on SVM Model. – Procedia Computer Science, Vol. 31, 2014, pp. 423-430.
  10. Bing, Q. H., M. T. Kechadi, B. Buckley, G. Kiernan, E. J. Keogh, T. A. Rashid. A New Feature Set with New Window Techniques for Customer Churn Prediction in Land-Line Telecommunications. – Expert Syst. Appl. Vol. 37, 2010, pp. 3657-3665.
  11. Kaur, I., J. Kaur. Customer Churn Analysis and Prediction in Banking Industry Using Machine Learning. – In: Proc. of 6th International Conference on Parallel, Distributed and Grid Computing (PDGC’20), 2020, pp. 434-437.
  12. Kaushik, H., D. Singh, M. Kaur, H. A. Alshazly, A. Zaguia, H. Hamam. Diabetic Retinopathy Diagnosis from Fundus Images Using Stacked Generalization of Deep Models. – IEEE Access, Vol. 9, 2021, pp. 108276-108292.
  13. Kumar, A. S., D. Chandrakala. An Optimal Churn Prediction Model Using Support Vector Machine with Adaboost. – Int. J. Sci. Res. Comput. Sci. Eng. Inf. Technol, Vol. 2, 2017, No 1, 225-230.
  14. LeCun, Y., Y. Bengio, G. E. Hinton. Deep Learning. – Nature, Vol. 521, 2015, No 7553, pp. 436-444.
  15. Massaoudi, M., S. S. Refaat, I. Chihi, M. A. Trabelsi, F. S. Oueslati, H. Abu-Rub. A Novel Stacked Generalization Ensemble-Based Hybrid Lgbm-Xgb-Mlp Model for Short-Term Load Forecasting. – Energy, Vol. 214, 2021, No 3.
  16. Müller, A., S. Guido. Introduction to Machine Learning with Python: A Guide for Data Scientists. 2016.
  17. Noda, K., Y. Yamaguchi, K. Nakadai, H. G. Okuno, T. Ogata. Audio-Visual Speech Recognition Using Deep Learning. – Applied Intelligence, Vol. 42, 2014, pp. 722-737.
  18. Ravi, V., S. Bapi, R. Churn, C.-F. Tsai, Y.-H. Lu, W. Verbeke, D. Martens, C. Mues, B. Baesens, N. Lu, H. Lin, J. Lu, G. Zhang, B. He, Y. Shi, Q. Wan, X. Zhao, K. W. De Bock, D. Van den Poel, H. Lee, Y. Lee, H. S. Cho. A Survey on Customer Churn Prediction Using Machine Learning Techniques. – International Journal of Computer Applications, Vol. 154, 2016, pp. 13-16.
  19. Russakovsky, O., J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z. Huang, A. Karpathy, A. Khosla, M. S. Bernstein, A. C. Berg, L. Fei-Fei. Imagenet Large Scale Visual Recognition Challenge. – International Journal of Computer Vision, Vol. 115, 2014, pp. 211-252.
  20. Simonyan, K., A. Zisserman. Very Deep Convolutional Networks for Large-Scale Image Recognition. – CoRR, abs/1409.1556, 2014.
  21. Simonyan, K., A. Zisserman. Very Deep Convolutional Networks for Large-Scale Image Recognition. – CoRR, abs/1409.1556, 2015.
  22. Smyth, P., D. H. Wolpert. Stacked Density Estimation. – In: Neural Information Processing Systems Research Gate, 1997.
  23. Sunkaraneni, T. Bank Turnover Dataset. Online, August 2022.
  24. Szegedy, C., W. Liu, Y. Jia, P. Sermanet, S. E. Reed, D. Anguelov, D. Erhan, V. Vanhoucke, A. Rabinovich. Going Deeper with Convolutions. – In: Proc. of 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR’14), 2014, pp. 1-9.
  25. Ting, K. M., I. H. Witten. Issues in Stacked Generalization. – J. Artif. Intell. Res., Vol. 10, 1999, pp. 271-289.
  26. Ting, K. M., I. H. Witten. Issues in Stacked Generalization. – ArXiv, abs/1105.5466, 2011.
  27. Tolles, J., W. J. Meurer. Logistic Regression: Relating Patient Characteristics to Outcomes. – JAMA, Vol. 316, 2016, No 5, pp. 533-534.
  28. Hoang, D. T., N. T. Le, V.-H. Nguyen. Customer Churnprediction in the Banking Sector Using Machine Learning-Based Classification Models. – Interdisciplinary Journal of Information, Knowledge, and Management, 2023.
  29. Veningston, K., P. V. Rao, C. T. Selvan, M. Ronalda. Investigation on Customer Churn Prediction Using Machine Learning Techniques. – In: Proc. of International Conference on Data Science and Applications, 2021.
  30. Xu, T., Y. Ma, K. R. Kim. Telecom Churn Prediction System Based on Ensemble Learning Using Feature Grouping. – Applied Science, Vol. 11, 2021.
  31. Zhang, X., J. J. Zhao, Y. LeCun. Character-Level Convolutional Networks for Text Classification. – In: Advances in Neural Information Processing Systems (NIPS 2015), Vol. 28, 2015.
  32. Tu, C. Exploratory Analysis of Bank Customer Attrition. Kaggle, 2020. Exploratory Analysis of Bank Customer Attrition. Accessed July 2024.
  33. Galal, M., S. Rady, M. Aref. Enhancing Customer Churn Prediction in Digital Banking Using Ensemble Modeling. – In: Proc. of 4th IEEE Novel Intelligent and Leading Emerging Sciences Conference (NILES’22), 2022, pp. 21-25.
DOI: https://doi.org/10.2478/cait-2024-0022 | Journal eISSN: 1314-4081 | Journal ISSN: 1311-9702
Language: English
Page range: 3 - 20
Submitted on: Apr 2, 2024
|
Accepted on: Aug 13, 2024
|
Published on: Sep 19, 2024
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2024 Van-Binh Ngo, Van-Hieu Vu, published by Bulgarian Academy of Sciences, Institute of Information and Communication Technologies
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.