References
- Yakoubi, M. A., M. T. Laskri. The Path Planning of Cleaner Robot for Coverage Region Using Genetic Algorithms. – Journal of Innovation in Digital Ecosystems, Vol. 3, 2016, No 1, pp. 37-43. DOI: 10.1016/j.jides.2016.05.004.
- Stączek, P., J. Pizoń, W. Danilczuk, A. Gola. A Digital Twin Approach for the Improvement of an Autonomous Mobile Robots (AMR’s) Operating Environment – A Case Study. – Sensors, Vol. 21, 2021, No 23, 7830. DOI: 10.3390/s21237830.
- Baek, D., M. Hwang, H. Kim, D. Kwon. Path Planning for Automation of Surgery Robot Based on Probabilistic Roadmap and Reinforcement Learning. – In: Proc. of 2018 15th International Conference on Ubiquitous Robots (UR), Honolulu, USA, 2018, pp. 342-347. DOI: 10.1109/urai.2018.8441801.
- Ortiz, E., B. Andres, F. J. L. Fraile, R. Poler, A. Ortiz. Fleet Management System for Mobile Robots in Healthcare Environments. – Journal of Industrial Engineering and Management, Vol. 14, 2021, No 1, 55. DOI: 10.3926/jiem.3284.
- Du, J., P. Zheng, Z. Xie, Y. Yang, H. Chu, G. Yu. Research on Path Planning Algorithm Based on Security Patrol Robot. – In: Proc. of 2016 IEEE International Conference on Mechatronics and Automation, Harbin, China, 2016, pp. 1030-1035. DOI: 10.1109/ICMA.2016.7558704.
- Denk, M., S. Bickel, P. Steck, S. Goetz, H. Völkl, S. Wartzack. Generating Digital Twins for Path-Planning of Autonomous Robots and Drones Using Constrained Homotopic Shrinking for 2D and 3D Environment Modeling. – Applied Sciences, Vol. 13, 2022, No 1. DOI: 10.3390/app13010105.
- Muhammad, A., M. K. Ali, S. Turaev, I. H. Shanono, F. Hujainah, M. N. M. Zubir, M. A. Faiz, E. R. M. Faizal, R. Abdulghafor. Novel Algorithm for Mobile Robot Path Planning in Constrained Environment. – Computers, Materials & Continua, Vol. 71, 2022, No 2, pp. 2697-2719. DOI: 10.32604/cmc.2022.020873.
- Patle, B. K., B. L. Ganesh, A. Pandey, D. R. Parhi, A. Jagadeesh. A Review: On Path Planning Strategies for Navigation of Mobile Robot. – Defence Technology, Vol. 15, 2019, No 4, pp. 582-606. DOI: 10.1016/j.dt.2019.04.011.
- Raafat, S. M., F. A. Raheem. Intelligent and Robust Path Planning and Control of Robotic Systems. – In: Springer eBooks, Springer Nature, 2017, pp. 291-317. DOI: 10.1007/978-3-319-43901-3_13.
- Xue, Y., J. Q. Sun. Solving the Path Planning Problem in Mobile Robotics with the Multi-Objective Evolutionary Algorithm. – Applied Sciences, Vol. 8, 2018, No 9, p. 1425, DOI: 10.3390/app8091425.
- Sadiq, A. T., A. N. Hasan. Robot Path Planning Based on PSO and D Algorithms in a Dynamic Environment. – In: Proc. of International Conference on Current Research in Computer Science and Information Technology (ICCIT’17), 2017. DOI: 10.1109/crcsit.2017.7965550.
- Ahmed, T. S., F. A. Raheem, N. Abbas. Ant Colony Algorithm Improvement for Robot Arm Path Planning Optimization Based on D* Strategy. – International Journal of Mechanical &Mechatronics Engineering, Vol. 21, 2017, No 1, pp. 96-111, 2021
- Raheem, F. A., S. M. Raafat, S. M. Mahdi. Robot Path-Planning Research Applications in Static and Dynamic Environments. – In: J. N. Furze, S. Eslamian, S. M. Raafat, K. Swing, Eds. Earth Systems Protection and Sustainability. Cham, Springer, 2022. DOI: 10.1007/978-3-030-85829-2_12.
- Wang, D., S. Chen, Y. Zhang, L. Liu. Path Planning of Mobile Robot in Dynamic Environment: Fuzzy Artificial Potential Field and Extensible Neural Network. – Artificial Life and Robotics, Vol. 26, 2021, No 1, pp. 129-139. DOI: 10.1007/s10015-020-00630-6.
- Raheem, F. A., U. I. Hameed. Interactive Heuristic D* Path Planning Solution Based on PSO for Two-Link Robotic Arm in Dynamic Environment. – World Journal of Engineering and Technology, Vol. 7, 2019, No 1, pp. 80-99. DOI: 10.4236/wjet.2019.71005.
- Klemm, S. O., J. Oberlander, A. Hermann, A. Roennau, T. Schamm, J. M. Zollner, R. Dillmann. – RRT-Connect: Faster, Asymptotically Optimal Motion Planning, 2015. DOI: 10.1109/robio.2015.7419012.
- He, D., H. Wang, P. Li. Robot Path Planning Using Improved Rapidly-Exploring Random Tree Algorithm. – In: Proc. of 2018 IEEE Industrial Cyber-Physical Systems (ICPS), St. Petersburg, Russia, 2018, pp. 181-186. DOI: 10.1109/icphys.2018.8387656.
- Tian, L., Z. Zhang, C. Zheng, Y. Tian, Y. Zhao, Z. Wang, Z, Y. Qin. An Improved Rapidly-Exploring Random Trees Algorithm Combining Parent Point Priority Determination Strategy and Real-Time Optimization Strategy for Path Planning. – Sensors, Vol. 21, 2021, No 20. DOI: 10.3390/s21206907.
- Jin, H., W. Cui, H. Fu. Improved RRT-Connect Algorithm for Urban Low-Altitude UAV Route Planning. – Journal of Physics, Vol. 1948, 2021, No 1. DOI: 10.1088/1742-6596/1948/1/012048.
- Kang, J. U., D. W. Lim, Y. S. Choi, W. D. Jang, J. W. Jung. Improved RRT-Connect Algorithm Based on Triangular Inequality for Robot Path Planning. – Sensors, Vol. 21, 2021, No 2. DOI: 10.3390/s21020333.
- Zhang, Y., H. Jiang, X. Zhong, X. Zhong, J. Zhao. MI-RRT-Connect Algorithm for Quadruped Robotics Navigation with Efficiently Path Planning. – Journal of Physics, Vol. 2402, 2022, No 1. DOI: 10.1088/1742-6596/2402/1/012014.
- Ding, J., Y. Zhou, X. Huang, K. Song, S. Lu, L. Wang. An Improved RRT* Algorithm for Robot Path Planning Based on Path Expansion Heuristic Sampling. – Journal of Computational Science, Vol. 67, 2023. DOI: 10.1016/j.jocs.2022.101937.
- Yamashita, T., T. Nishida. Path Planning Using Multilayer Neural Network and Rapidly-Exploring Random Tree. – In: Proc. of 18th International Conference on Control, Automation and Systems, Korea, 2018. https://api.semanticscholar.org/CorpusID:210705126.
- Kang, J. U., Y. Choi, J. Jung. A Method of Enhancing Rapidly-Exploring Random Tree Robot Path Planning Using Midpoint Interpolation. – Applied Sciences, Vol. 11, 2021, No 18. DOI: 10.3390/app11188483.
- Lonklang, A., J. Botzheim. Improved Rapidly Exploring Random Trees with Bacterial Mutation and Node Deletion for Offline Path Planning of Mobile Robots. – Electronics, Vol. 11, 2022, No 9. DOI: 10.3390/electronics11091459.
- Pohan, M. A. R., J. Utama. Efficient Sampling-Based for Mobile Robot Path Planning in a Dynamic Environment Based on the Rapidly-Exploring Random Tree and a Rule-Template Sets. – International Journal of Engineering. Transactions A: Basics, Vol. 36, 2023, No 4, pp. 797-806. DOI: 10.5829/ije.2023.36.04a.16.
- Kang, J. U., Y. Choi, J. Jung. A Method of Enhancing Rapidly-Exploring Random Tree Robot Path Planning Using Midpoint Interpolation. – Applied Sciences, Vol. 11, 2021, No 18. DOI: 10.3390/app11188483.
- Muhammad, S., Y. Zhou. Path Planning for EVs Based on RA-RRT* Model. – Frontiers in Energy Research, Vol. 10, 2023. DOI: 10.3389/fenrg.2022.996726.
- Seif, R. Mobile Robot Path Planning by RRT* in Dynamic Environments. – I. J. Intelligent Systems and Applications, Vol. 5, 2015, pp. 24-30. DOI: 10.5815/ijisa.2015.05.04.
- Rasheed, A. A., A. S. Al-Araji, M. N. Abdullah. Static and Dynamic Path Planning Algorithms Design for a Wheeled Mobile Robot Based on a Hybrid Technique. – International Journal of Intelligent Engineering and Systems, Vol. 15, 2022, No 4, pp. 167-181. http://dx.doi.org/10.22266/ijies2022.0831.16.
- Zhang, Z., D. Wu, J. Gu, F. Li. A Path-Planning Strategy for Unmanned Surface Vehicles Based on an Adaptive Hybrid Dynamic Stepsize and Target Attractive Force-RRT Algorithm. – Journal of Marine Science and Engineering, Vol. 7, 2019, No 5. DOI: 10.3390/jmse7050132.
- LaValle, S. M. Rapidly-Exploring Random Trees: A New Tool for Path Planning. – The Annual Research Report, Computer Science Dept., Iowa State University, October 1998.
- Kuffner, J. J., S. M. LaValle. RRT-Connect: An Efficient Approach to Single-Query Path Planning. – In: Proc. of 2000 ICRA. Millennium Conference. IEEE International Conference on Robotics and Automation. Symposia Proceedings (Cat. No.00CH37065), San Francisco, CA, USA, Vol. 2, 2000, pp. 995-1001. DOI: 10.1109/ROBOT.2000.844730.
- Karaman, S., M. R. Walter, A. Perez, E. Frazzoli, S. Teller. Anytime Motion Planning Using the RRT*. – In: Proc. of IEEE International Conference on Robotics and Automation, Shanghai, China, 2011, pp. 1478-1483. DOI: 10.1109/ICRA.2011.5980479.
- Gammell, J. D., S. S. Srinivasa, T. D. Barfoot. Informed RRT*: Optimal Sampling-Based Path Planning Focused via Direct Sampling of an Admissible Ellipsoidal Heuristic. – In: Proc. of IEEE/RSJ International Conference on Intelligent Robots and Systems, Chicago, IL, USA, 2014, pp. 2997-3004. DOI: 10.1109/IROS.2014.6942976.
- Nasir, J., F. Islam, U. Malik, Y. Ayaz, O. Hasan, M. Khan, M. S. Muhammad. RRT*-SMART: A Rapid Convergence Implementation of RRT*. – International Journal of Advanced Robotic Systems, Vol. 10, 2013, No 7, 299. DOI: 10.5772/56718.
- Fragkopoulos, C., A. Graeser. Extended RRT Algorithm with Dynamic N-Dimensional Cuboid Domains. – In: Proc. of 12th International Conference on Optimization of Electrical and Electronic Equipment, Brasov, Romania, 2010, pp. 851-857. DOI: 10.1109/OPTIM.2010.5510401.
- Zhou, M., N. Gao. Research on Optimal Path Based on Dijkstra Algorithms. – In: Proc. of 3rd International Conference on Mechatronics Engineering and Information Technology (ICMEIT’19), Advances in Computer Science Research, 2019. DOI: 10.2991/icmeit-19.2019.141.
- Suwoyo, H., A. Adriansyah, J. Andika, A. Ubaidillah, M. F. Zakaria. An Integrated RRT*SMART-A* Algorithm for Solving the Global Path Planning Problem in a Static Environment. – IIUM Engineering Journal, Vol. 24, 2023, No 1, pp. 269-284. DOI: 10.31436/iiumej.v24i1.2529.
- Poli, R., J. Kennedy, T. Blackwell. Particle Swarm Optimization. – Swarm Intelligence, Vol. 1, 2007, No 1, pp. 33-57. DOI: 10.1007/s11721-007-0002-0.
- Dorigo, M., M. Birattari, T. Stützle. Ant Colony Optimization. Chapman and Hall/CRC, 2007, pp. 417-430. DOI: 10.1201/9781420010749-33.
