Have a personal or library account? Click to login
Analysis of Energy and Network Cost Effectiveness of Scheduling Strategies in Datacentre Cover

Analysis of Energy and Network Cost Effectiveness of Scheduling Strategies in Datacentre

Open Access
|Sep 2023

References

  1. Thirumala Rao, B. Scheduling Data Intensive Workloads through Virtualization on MapReduce Based Clouds. – Int. J. Distrib. Parallel Syst., Vol. 3, 2012, No 4, pp. 99-110. DOI: 10.5121/ijdps.2012.3411.
  2. Mansouri, N. A New Job Scheduling in Data Grid Environment Based on Data and Computational Resource Availability. – AmirKabir Int. Sci. Res., Vol. 47, 2015, No 1, pp. 41-53.
  3. Kliazovich, D., P. Bouvry, S. U. Khan. DENS: Data Center Energy-Efficient Network-Aware Scheduling. – In: Proc. of 2010 IEEE/ACM Int. Conf. Green Comput. Commun. GreenCom 2010, No August 2010, pp. 69-75. DOI: 10.1109/GreenCom-CPSCom.2010.31.
  4. McClatchey, R., A. Anjum, H. Stockinger, A. Ali, I. Willers, M. Thomas. Scheduling in Data Intensive and Network Aware (DIANA) Grid Environments. – J. Grid Comput., Vol. 5, 2007, No 1, pp. 43-64.
  5. Greenberg, A., J. Hamilton, D. A. Maltz, P. Patel. The Cost of a Cloud. – ACM SIGCOMM Comput. Commun. Rev., Vol. 39, 2008, No 1, pp. 68-73. DOI: 10.1145/1496091.1496103.
  6. Li, X., Y. Li, T. Liu, J. Qiu, F. Wang. The Method and Tool of Cost Analysis for Cloud Computing. – In: Proc. of CLOUD 2009 – 2009 IEEE Int. Conf. Cloud Comput., 2009, pp. 93-100. DOI: 10.1109/CLOUD.2009.84.
  7. Mayyad Jaber. Architecture de Système d’information distribué pour la gestion de la chaîne logistique : Une approche orientée servic. Phd Thesys. Lion, France, 2009 (In French).
  8. Chandio, A. A., M. S. Korejo, I. A. Korejo, M. S. Chandio. To Investigate Classical Scheduling Schemes with Power Management in IaaS Cloud Environment for HPC Workloads. – In: Proc. of IEEE Student Conf. Res. Dev. Inspiring Technol. Humanit. SCOReD 2017, Vol. 2018-January, 2018, pp. 121-126. DOI: 10.1109/SCORED.2017.8305409.
  9. Chandio, A. A., et al. A Comparative Study on Resource Allocation and Energy Efficient Job Scheduling Strategies in Large-Scale Parallel Computing Systems. – Cluster Comput., Vol. 17, 2014, No 4, pp. 1349-1367. DOI: 10.1007/s10586-014-0384-x.
  10. Sana, M. U., Z. Li. Efficiency Aware Scheduling Techniques in Cloud Computing: A Descriptive Literature Review. – PeerJ Comput. Sci., Vol. 7, 2021, pp. 1-37. DOI: 10.7717/PEERJ-CS.509.
  11. Leontiou, N., D. Dechouniotis, S. Denazis, S. Papavassiliou. A Hierarchical Control Framework of Load Balancing and Resource Allocation of Cloud Computing Services. – Comput. Electr. Eng., Vol. 67, 2018, No March, pp. 235-251. DOI: 10.1016/j.compeleceng.2018.03.035.
  12. Kliazovich, D., J. E. Pecero, A. Tchernykh, P. Bouvry, S. U. Khan, A. Y. Zomaya. CA-DAG: Modeling Communication-Aware Applications for Scheduling in Cloud Computing. – Journal of Grid Computing, Vol. 14, 2016, pp. 23-39.
  13. Singh, S., I. Chana. Resource Provisioning and Scheduling in Clouds: QoS Perspective. – Springer US, Vol. 72, 2016, No 3.
  14. S. U. K., D. Kliazovich, P. Bouvry. Simulation and Performance Analysis of Data Intensive and Workload Intensive Cloud Computing Data Centers. – Opt. Interconnects Futur. Data Cent. Net., 2013.
  15. Wang, L., S. U. Khan, J. Dayal. Thermal Aware Workload Placement with Task-Temperature Profiles in a Data Center. – The Journal of Supercomputing, Vol. 61, 2012, pp. 780-803.
  16. Headquarters, A. Cisco Data Center Infrastructure 2.5 Design Guide. – Cisco, No 6387, 2007.
  17. Kashif, B., S. U. Khan, J. Kolodziej, L. Zhang, K. Hayat, S. Ahmad Madani, N. Min-Allah, L. Wang, D. Chen. A Comparative Study Of Data Center Network Architectures. – In ECMS, 2012, pp. 526-532.
  18. Sutha, K., G. M. K. Nawaz. Research Perspective of Job Scheduling in Cloud Computing. – In: Proc. of 8th International Conference on Advanced Computing (ICoAC’2016), 2017, pp. 61-66.
  19. Abdullahi, I. Process Scheduling In Longest Job First (LJF) Algorithm. A Proposed Framework for Starvation Problem.
  20. Sindhu, S. Task Scheduling in Cloud Computing. – Comp. Eng. Techn, 2015.
  21. Etminani, K. A Min-Min Max-Min Selective Algorihtm for Grid Task Scheduling. 2007.
  22. Ilankumaran, A., S. J. Narayanan. An Energy-Aware QoS Load Balance Scheduling Using Hybrid GAACO Algorithm for Cloud. – Cybernetics and Information Technologies, Vol. 23, 2023, No 1, pp. 161-177.
  23. Bhargavi, K., S. G. Shiva. Uncertainty Aware T2SS Based Dyna-Q-Learning Framework for Task Scheduling in Grid Computing. – Cybernetics and Information Technologies, Vol. 22, 2022, No 3, pp. 48-67.
  24. Chandio, A. A., N. Tziritas, M. S. Chandio, C.-Z. Xu. Energy Efficient VM Scheduling Strategies for HPC Workloads in Cloud Data Centers. - Sustainable Computing: Informatics and Systems, Vol. 24, 2019, 100352.
  25. Tziritas, N., C.-Z. Xu, T. Loukopoulos, S. U. Khan, Z. Yu. Application-Aware Workload Consolidation to Minimize Both Energy Consumption and Network Load in Cloud Environments. – In: Proc. of 2013 42nd IEEE International Conference on Parallel Processing, 2013, pp. 449-457.
DOI: https://doi.org/10.2478/cait-2023-0024 | Journal eISSN: 1314-4081 | Journal ISSN: 1311-9702
Language: English
Page range: 56 - 69
Submitted on: Jun 5, 2023
Accepted on: Jul 24, 2023
Published on: Sep 28, 2023
Published by: Bulgarian Academy of Sciences, Institute of Information and Communication Technologies
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2023 Afia Bhutto, Aftab Ahmed Chandio, Kirshan Kumar Luhano, Imtiaz Ali Korejo, published by Bulgarian Academy of Sciences, Institute of Information and Communication Technologies
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.