References
- Thirumala Rao, B. Scheduling Data Intensive Workloads through Virtualization on MapReduce Based Clouds. – Int. J. Distrib. Parallel Syst., Vol. 3, 2012, No 4, pp. 99-110. DOI: 10.5121/ijdps.2012.3411.
- Mansouri, N. A New Job Scheduling in Data Grid Environment Based on Data and Computational Resource Availability. – AmirKabir Int. Sci. Res., Vol. 47, 2015, No 1, pp. 41-53.
- Kliazovich, D., P. Bouvry, S. U. Khan. DENS: Data Center Energy-Efficient Network-Aware Scheduling. – In: Proc. of 2010 IEEE/ACM Int. Conf. Green Comput. Commun. GreenCom 2010, No August 2010, pp. 69-75. DOI: 10.1109/GreenCom-CPSCom.2010.31.
- McClatchey, R., A. Anjum, H. Stockinger, A. Ali, I. Willers, M. Thomas. Scheduling in Data Intensive and Network Aware (DIANA) Grid Environments. – J. Grid Comput., Vol. 5, 2007, No 1, pp. 43-64.
- Greenberg, A., J. Hamilton, D. A. Maltz, P. Patel. The Cost of a Cloud. – ACM SIGCOMM Comput. Commun. Rev., Vol. 39, 2008, No 1, pp. 68-73. DOI: 10.1145/1496091.1496103.
- Li, X., Y. Li, T. Liu, J. Qiu, F. Wang. The Method and Tool of Cost Analysis for Cloud Computing. – In: Proc. of CLOUD 2009 – 2009 IEEE Int. Conf. Cloud Comput., 2009, pp. 93-100. DOI: 10.1109/CLOUD.2009.84.
- Mayyad Jaber. Architecture de Système d’information distribué pour la gestion de la chaîne logistique : Une approche orientée servic. Phd Thesys. Lion, France, 2009 (In French).
- Chandio, A. A., M. S. Korejo, I. A. Korejo, M. S. Chandio. To Investigate Classical Scheduling Schemes with Power Management in IaaS Cloud Environment for HPC Workloads. – In: Proc. of IEEE Student Conf. Res. Dev. Inspiring Technol. Humanit. SCOReD 2017, Vol. 2018-January, 2018, pp. 121-126. DOI: 10.1109/SCORED.2017.8305409.
- Chandio, A. A., et al. A Comparative Study on Resource Allocation and Energy Efficient Job Scheduling Strategies in Large-Scale Parallel Computing Systems. – Cluster Comput., Vol. 17, 2014, No 4, pp. 1349-1367. DOI: 10.1007/s10586-014-0384-x.
- Sana, M. U., Z. Li. Efficiency Aware Scheduling Techniques in Cloud Computing: A Descriptive Literature Review. – PeerJ Comput. Sci., Vol. 7, 2021, pp. 1-37. DOI: 10.7717/PEERJ-CS.509.
- Leontiou, N., D. Dechouniotis, S. Denazis, S. Papavassiliou. A Hierarchical Control Framework of Load Balancing and Resource Allocation of Cloud Computing Services. – Comput. Electr. Eng., Vol. 67, 2018, No March, pp. 235-251. DOI: 10.1016/j.compeleceng.2018.03.035.
- Kliazovich, D., J. E. Pecero, A. Tchernykh, P. Bouvry, S. U. Khan, A. Y. Zomaya. CA-DAG: Modeling Communication-Aware Applications for Scheduling in Cloud Computing. – Journal of Grid Computing, Vol. 14, 2016, pp. 23-39.
- Singh, S., I. Chana. Resource Provisioning and Scheduling in Clouds: QoS Perspective. – Springer US, Vol. 72, 2016, No 3.
- S. U. K., D. Kliazovich, P. Bouvry. Simulation and Performance Analysis of Data Intensive and Workload Intensive Cloud Computing Data Centers. – Opt. Interconnects Futur. Data Cent. Net., 2013.
- Wang, L., S. U. Khan, J. Dayal. Thermal Aware Workload Placement with Task-Temperature Profiles in a Data Center. – The Journal of Supercomputing, Vol. 61, 2012, pp. 780-803.
- Headquarters, A. Cisco Data Center Infrastructure 2.5 Design Guide. – Cisco, No 6387, 2007.
- Kashif, B., S. U. Khan, J. Kolodziej, L. Zhang, K. Hayat, S. Ahmad Madani, N. Min-Allah, L. Wang, D. Chen. A Comparative Study Of Data Center Network Architectures. – In ECMS, 2012, pp. 526-532.
- Sutha, K., G. M. K. Nawaz. Research Perspective of Job Scheduling in Cloud Computing. – In: Proc. of 8th International Conference on Advanced Computing (ICoAC’2016), 2017, pp. 61-66.
- Abdullahi, I. Process Scheduling In Longest Job First (LJF) Algorithm. A Proposed Framework for Starvation Problem.
- Sindhu, S. Task Scheduling in Cloud Computing. – Comp. Eng. Techn, 2015.
- Etminani, K. A Min-Min Max-Min Selective Algorihtm for Grid Task Scheduling. 2007.
- Ilankumaran, A., S. J. Narayanan. An Energy-Aware QoS Load Balance Scheduling Using Hybrid GAACO Algorithm for Cloud. – Cybernetics and Information Technologies, Vol. 23, 2023, No 1, pp. 161-177.
- Bhargavi, K., S. G. Shiva. Uncertainty Aware T2SS Based Dyna-Q-Learning Framework for Task Scheduling in Grid Computing. – Cybernetics and Information Technologies, Vol. 22, 2022, No 3, pp. 48-67.
- Chandio, A. A., N. Tziritas, M. S. Chandio, C.-Z. Xu. Energy Efficient VM Scheduling Strategies for HPC Workloads in Cloud Data Centers. - Sustainable Computing: Informatics and Systems, Vol. 24, 2019, 100352.
- Tziritas, N., C.-Z. Xu, T. Loukopoulos, S. U. Khan, Z. Yu. Application-Aware Workload Consolidation to Minimize Both Energy Consumption and Network Load in Cloud Environments. – In: Proc. of 2013 42nd IEEE International Conference on Parallel Processing, 2013, pp. 449-457.
