References
- Susan, D. A. Open Educational Resources: Reviewing Initiatives and Issues. – Open Learning: The Journal of Open, Distance and e-Learning, Vol. 24, 2009, No 1, pp. 3-10.
- Chang, B. Culture as a Tool: Facilitating Knowledge Construction in the Context of a Learning Community. – International Journal of Lifelong Education, Vol. 29, 2010, No 6, pp. 705-722.
- UNESCO. Recommendation on Open Educational Resources (OER). 2019.
- Smith, M. C. What are learning resources? What are some examples? 2016.
- Barajas, M., G. J. Gannaway. Implementing e‐Learning in the Traditional Higher Education Institutions. – Higher Education in Europe, Vol. 32, 2007, No 2-3, pp. 111-119.
- Muñoz-Merino, P. J., C. D. Kloos, J. F. Naranjo. Enabling Interoperability for LMS Educational Services. – Computer Standards & Interfaces, Vol. 31, 2009, No 2, pp. 484-498.
- Santos, O. C., J. G. Boticario. Requirements for Semantic Educational Recommender Systems in Formal e-Learning Scenarios. – Algorithms, Vol. 4, 2011, No 2, pp. 131-154.
- Li, X., D. Roth. Learning Question Classifiers. Association for Computational Linguistics. 2002.
- Hacioglu, K., W. Ward. Question Classification with Support Vector Machines and Error Correcting Codes. Association for Computational Linguistics. 2003.
- Zhang, D., W. S. Lee. Question Classification Using Support Vector Machines. – In: Proc. of 26th Annual International ACM SIGIR Conference on Research and Development in Informaion Retrieval, ACM, Toronto, Canada, 2003 (Insert City of Publication; Insert 2003 of Publication).
- Brown, J. Entity-Tagged Language Models for Question Classification in a QA System. 2004. http://www-2.cs.cmu.edu/jonbrown/IRLab/Brown-IRLab.pdf
- Mishra, M., V. Mishra, H. R. Sharma. Question Classification Using Semantic, Syntactic and Lexical Features. – International Journal of Web & Semantic Technology, Vol. 4, 1.07. 2013.
- Durme, B., Y. C. A. Huang, E. Nyberg. Towards Light Semantic Processing for Question Answering. 2.03. 2004.
- De, T. C., P. N. Khang. Text Document Classification with Support Vector Machine and Decision Tree. – Can Tho University Journal of Science, Vol. 21a, 2012, pp. 52-63 (in Vietnamese).
- Thao, T. T. T., V. T. Chinh. Building a Vietnamese Document Classification System. Hong Bang University, 2012 (in Vietnamese).
- Chai, D., W. Wu, Q. Han, F. Wu, J. Li. Description Based Text Classification with Reinforcement Learning, 2020.
- Lin, E., Q. Chen, X. Qi. Deep Reinforcement Learning for Imbalanced Classification. – Applied Intelligence, Vol. 50, No 8, 2020, pp. 2488-2502.
- Zulqarnain, M., R. Ghazali, Y. Mazwin, M. Rehan. A Comparative Review on Deep Learning Models for Text Classification. 13.04.2020.
- Gomaa, W., A. Fahmy. A Survey of Text Similarity Approaches. – International Journal of Computer Applications, Vol. 68, 18.04.2013, No 13, pp. 13-18.
- Li, Y., Z. Bandar, D. McLean, J. O’Shea. A Method for Measuring Sentence Similarity and Its Application to Conversational Agents, 2004.
- Gunasinghe, U. L. D. N., W. A. M. D. Silva, N. H. N. D. da Silva, A. S. Perera, W. A. D. Sashika, W. D. T. P. Premasiri. Sentence Similarity Measuring by Vector Space Model. 2014.
- Al-Shamery, E., H. Q. Gheni. Plagiarism Detection Using Semantic Analysis. – Indian Journal of Science and Technology, Vol. 9, 2016, No 1, pp. 1-8.
- Sharma, K., S. Singh, I. Mukherjee, B. Kumar. Plagiarism Detection Based on Semantic Analysis. – International Journal of Knowledge and Learning, Vol. 12, 1.01.2018, 242.
- Wali, W., B. Gargouri, A. Ben Hamadou. An Enhanced Plagiarism Detection Based on Syntactico-Semantic Knowledge. Springer International Publishing. 2020.
- Farouk, M. Measuring Text Similarity Based on Structure and Word Embedding. – Cognitive Systems Research, Vol. 63, 1.10.2020, pp. 1-10.
- Rastrollo-Guerrero, J. L., J. A. Gómez-Pulido, A. Durán-Domínguez. Analyzing and Predicting Students’ Performance by Means of Machine Learning: A Review. – Applied Sciences, Vol. 10, 2020, No 3.
- Thai-Nghe, N., T. Horvath, L. Schmidt-Thieme. Factorization Models for Forecasting Student Performance. 2011.
- Huynh-Ly, T.-N., N. Thai-Nghe. A System for Predicting Students’s Course Result Using a Free Recommender System Library of MyMediaLite. 2013 (in Vietnamese).
- Hai, N. P., T.-W. Sheu, M. Nagai. Predicting the Student Learning Outcomes Based on the Combination of Taylor Approximation Method and Grey Models. – VNU Journal of Science: Education Research, Vol. 31, 2015, No 2, pp. 70-83 (in Vietnamese).
- Iqbal, Z., J. Qadir, A. Mian, F. Kamiran. Machine Learning Based Student Grade Prediction: A Case Study. 17.08.2017.
- Zhang, L., T. Luo, F. Zhang, Y. Wu. A Recommendation Model Based on Deep Neural Network. – IEEE Access, Vol. 6, 2018, pp. 9454-9463.
- Fu, M., H. Qu, Z. Yi, L. Lu, Y. Liu. A Novel Deep Learning-Based Collaborative Filtering Model for Recommendation System. – IEEE Transactions on Cybernetics, Vol. 49, 2019, No 3 pp. 1084-1096.
- Brownlee, J. When to Use MLP, CNN, and RNN Neural Networks. 2022.
