Have a personal or library account? Click to login
Novel Approaches for Searching and Recommending Learning Resources Cover

Novel Approaches for Searching and Recommending Learning Resources

Open Access
|Jun 2023

References

  1. Susan, D. A. Open Educational Resources: Reviewing Initiatives and Issues. – Open Learning: The Journal of Open, Distance and e-Learning, Vol. 24, 2009, No 1, pp. 3-10.
  2. Chang, B. Culture as a Tool: Facilitating Knowledge Construction in the Context of a Learning Community. – International Journal of Lifelong Education, Vol. 29, 2010, No 6, pp. 705-722.
  3. UNESCO. Recommendation on Open Educational Resources (OER). 2019.
  4. Smith, M. C. What are learning resources? What are some examples? 2016.
  5. Barajas, M., G. J. Gannaway. Implementing e‐Learning in the Traditional Higher Education Institutions. – Higher Education in Europe, Vol. 32, 2007, No 2-3, pp. 111-119.
  6. Muñoz-Merino, P. J., C. D. Kloos, J. F. Naranjo. Enabling Interoperability for LMS Educational Services. – Computer Standards & Interfaces, Vol. 31, 2009, No 2, pp. 484-498.
  7. Santos, O. C., J. G. Boticario. Requirements for Semantic Educational Recommender Systems in Formal e-Learning Scenarios. – Algorithms, Vol. 4, 2011, No 2, pp. 131-154.
  8. Li, X., D. Roth. Learning Question Classifiers. Association for Computational Linguistics. 2002.
  9. Hacioglu, K., W. Ward. Question Classification with Support Vector Machines and Error Correcting Codes. Association for Computational Linguistics. 2003.
  10. Zhang, D., W. S. Lee. Question Classification Using Support Vector Machines. – In: Proc. of 26th Annual International ACM SIGIR Conference on Research and Development in Informaion Retrieval, ACM, Toronto, Canada, 2003 (Insert City of Publication; Insert 2003 of Publication).
  11. Brown, J. Entity-Tagged Language Models for Question Classification in a QA System. 2004. http://www-2.cs.cmu.edu/jonbrown/IRLab/Brown-IRLab.pdf
  12. Mishra, M., V. Mishra, H. R. Sharma. Question Classification Using Semantic, Syntactic and Lexical Features. – International Journal of Web & Semantic Technology, Vol. 4, 1.07. 2013.
  13. Durme, B., Y. C. A. Huang, E. Nyberg. Towards Light Semantic Processing for Question Answering. 2.03. 2004.
  14. De, T. C., P. N. Khang. Text Document Classification with Support Vector Machine and Decision Tree. – Can Tho University Journal of Science, Vol. 21a, 2012, pp. 52-63 (in Vietnamese).
  15. Thao, T. T. T., V. T. Chinh. Building a Vietnamese Document Classification System. Hong Bang University, 2012 (in Vietnamese).
  16. Chai, D., W. Wu, Q. Han, F. Wu, J. Li. Description Based Text Classification with Reinforcement Learning, 2020.
  17. Lin, E., Q. Chen, X. Qi. Deep Reinforcement Learning for Imbalanced Classification. – Applied Intelligence, Vol. 50, No 8, 2020, pp. 2488-2502.
  18. Zulqarnain, M., R. Ghazali, Y. Mazwin, M. Rehan. A Comparative Review on Deep Learning Models for Text Classification. 13.04.2020.
  19. Gomaa, W., A. Fahmy. A Survey of Text Similarity Approaches. – International Journal of Computer Applications, Vol. 68, 18.04.2013, No 13, pp. 13-18.
  20. Li, Y., Z. Bandar, D. McLean, J. O’Shea. A Method for Measuring Sentence Similarity and Its Application to Conversational Agents, 2004.
  21. Gunasinghe, U. L. D. N., W. A. M. D. Silva, N. H. N. D. da Silva, A. S. Perera, W. A. D. Sashika, W. D. T. P. Premasiri. Sentence Similarity Measuring by Vector Space Model. 2014.
  22. Al-Shamery, E., H. Q. Gheni. Plagiarism Detection Using Semantic Analysis. – Indian Journal of Science and Technology, Vol. 9, 2016, No 1, pp. 1-8.
  23. Sharma, K., S. Singh, I. Mukherjee, B. Kumar. Plagiarism Detection Based on Semantic Analysis. – International Journal of Knowledge and Learning, Vol. 12, 1.01.2018, 242.
  24. Wali, W., B. Gargouri, A. Ben Hamadou. An Enhanced Plagiarism Detection Based on Syntactico-Semantic Knowledge. Springer International Publishing. 2020.
  25. Farouk, M. Measuring Text Similarity Based on Structure and Word Embedding. – Cognitive Systems Research, Vol. 63, 1.10.2020, pp. 1-10.
  26. Rastrollo-Guerrero, J. L., J. A. Gómez-Pulido, A. Durán-Domínguez. Analyzing and Predicting Students’ Performance by Means of Machine Learning: A Review. – Applied Sciences, Vol. 10, 2020, No 3.
  27. Thai-Nghe, N., T. Horvath, L. Schmidt-Thieme. Factorization Models for Forecasting Student Performance. 2011.
  28. Huynh-Ly, T.-N., N. Thai-Nghe. A System for Predicting Students’s Course Result Using a Free Recommender System Library of MyMediaLite. 2013 (in Vietnamese).
  29. Hai, N. P., T.-W. Sheu, M. Nagai. Predicting the Student Learning Outcomes Based on the Combination of Taylor Approximation Method and Grey Models. – VNU Journal of Science: Education Research, Vol. 31, 2015, No 2, pp. 70-83 (in Vietnamese).
  30. Iqbal, Z., J. Qadir, A. Mian, F. Kamiran. Machine Learning Based Student Grade Prediction: A Case Study. 17.08.2017.
  31. Zhang, L., T. Luo, F. Zhang, Y. Wu. A Recommendation Model Based on Deep Neural Network. – IEEE Access, Vol. 6, 2018, pp. 9454-9463.
  32. Fu, M., H. Qu, Z. Yi, L. Lu, Y. Liu. A Novel Deep Learning-Based Collaborative Filtering Model for Recommendation System. – IEEE Transactions on Cybernetics, Vol. 49, 2019, No 3 pp. 1084-1096.
  33. Brownlee, J. When to Use MLP, CNN, and RNN Neural Networks. 2022.
DOI: https://doi.org/10.2478/cait-2023-0019 | Journal eISSN: 1314-4081 | Journal ISSN: 1311-9702
Language: English
Page range: 151 - 169
Submitted on: Nov 14, 2022
Accepted on: May 12, 2023
Published on: Jun 12, 2023
Published by: Bulgarian Academy of Sciences, Institute of Information and Communication Technologies
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2023 Tran Thanh Dien, Nguyen Thanh-Hai, Nguyen Thai-Nghe, published by Bulgarian Academy of Sciences, Institute of Information and Communication Technologies
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.