Have a personal or library account? Click to login
Hy-MOM: Hybrid Recommender System Framework Using Memory-Based and Model-Based Collaborative Filtering Framework Cover

Hy-MOM: Hybrid Recommender System Framework Using Memory-Based and Model-Based Collaborative Filtering Framework

By: Gina George and  Anisha M. Lal  
Open Access
|Apr 2022

References

  1. 1. Karataev, E., V. Zadorozhny. Adaptive Social Learning Based on Crowdsourcing. – IEEE Transactions on Learning Technologies, Vol. 10, April 2017, No 2, pp. 128-139.10.1109/TLT.2016.2515097
  2. 2. KPMG & Google (2017). Online Education in India: 2021. Accessed 21 Janurary 2019. https://assets.kpmg.com/content/dam/kpmg/in/pdf/2017/05/Online-Education-in-India-2021.pdf/
  3. 3. Ricci, F., L. Rokach, B. Shapira. Recommender Systems: Introduction and Challenges. – Recommender Systems Handbook, Boston, MA, USA: Springer, 2015, pp. 1-34.10.1007/978-1-4899-7637-6
  4. 4. Wan, S., Z. Niu. A Hybrid e-Learning Recommendation Approach Based on Learners’ Influence Propagation. – IEEE Transactions on Knowledge and Data Engineering, January 2019.10.1109/TKDE.2019.2895033
  5. 5. Adomavicius, G., A. Tuzhilin. Context-Aware Recommender Systems. – Recommender Systems Handbook, Boston, MA, USA: Springer, 2011, pp. 217-253.10.1007/978-0-387-85820-3_7
  6. 6. Ren, L., W. Wang. An SVM-Based Collaborative Filtering Approach for Top-N Web Services Recommendation. – Future Generation Computer Systems, Vol. 78, January 2018, pp. 531-543.10.1016/j.future.2017.07.027
  7. 7. Aggarwal, C. Recommender System the Textbook. Switzerland, Springer International Publishing, 2016.
  8. 8. Paradarami, T. K., N. D. Bastian, J. L. Wightman. A Hybrid Recommender System Using Artificial Neural Networks. – Expert Systems with Applications, Vol. 83, October 2017, pp. 300-313.10.1016/j.eswa.2017.04.046
  9. 9. Fazeli, S., B. Loni, H. Drachsler, P. Sloep. Which Recommender System Can Best Fit Social Learning Platforms? – In: Proc. of European Conference on Technology Enhanced Learning, Springer, Cham, 2014, pp. 84-97.10.1007/978-3-319-11200-8_7
  10. 10. Koren, Y. Factorization Meets the Neighborhood: A Multifaceted Collaborative Filtering Model. – In: Proc. of 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, ACM, 2008, pp. 426-434.
  11. 11. Hofmann, T. Latent Semantic Models for Collaborative Filtering. – ACM Transactions on Information Systems (TOIS), Vol. 22, January 2004, No 1, pp. 89-115.10.1145/963770.963774
  12. 12. Koren, Y., R. Bell, C. Volinsky. Matrix Factorization Techniques for Recommender Systems. – Computer, Vol. 42, August 2009, No 8, pp. 30-37.10.1109/MC.2009.263
  13. 13. Yu, H. F., C. J. Hsieh, S. Si, I. Dhillon. Scalable Coordinate Descent Approaches to Parallel Matrix Factorization for Recommender Systems. – In: IEEE 12th International Conference on Data Mining, IEEE, 2012, pp. 765-774.10.1109/ICDM.2012.168
  14. 14. Lops, P., M. De Gemmis, G. Semeraro. Content-Based Recommender Systems: State of the Art and Trends. – Recommender Systems Handbook, Boston, MA, USA, Springer, 2011, pp. 73-105.10.1007/978-0-387-85820-3_3
  15. 15. Konstan, J., M. Ekstrand. Introduction to Matrix Factorization and Dimensionality Reduction. – Matrix Factorization and Advanced Techniques, 2018. https://www.coursera.org/lecture/matrix-factorization/introduction-to-matrix-factorization-and-dimensionality-reduction-ncbvP
  16. 16. Jahrer, M., A. Töscher, R. Legenstein. Combining Predictions for Accurate Recommender Systems. – In: Proc. of 16th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, ACM, 2010, pp. 693-702.10.1145/1835804.1835893
  17. 17. Fatahi, S., H. Moradi, L. Kashani-Vahid. A Survey of Personality and Learning Styles Models Applied in Virtual Environments with Emphasis on e-Learning Environments. – Artificial Intelligence Review, Vol. 46, October 2016, No 3, pp. 413-429.10.1007/s10462-016-9469-7
  18. 18. Rani, M., R. Nayak, O. P. Vyas. An Ontology-Based Adaptive Personalized e-Learning System, Assisted by Software Agents on Cloud Storage. – Knowledge-Based Systems, Vol. 90, December 2015, pp. 33-48.10.1016/j.knosys.2015.10.002
  19. 19. Truong, H. M. Integrating Learning Styles and Adaptive e-Learning System: Current Developments, Problems and Opportunities. – Computers in Human Behavior, Vol. 55, February 2016, pp. 1185-1193.10.1016/j.chb.2015.02.014
  20. 20. Wan, S., Z. Niu. An e-Learning Recommendation Approach Based on the Self-Organization of Learning Resource. – Knowledge-Based Systems, Vol. 160, November 2018, pp. 71-87.10.1016/j.knosys.2018.06.014
  21. 21. Soloman, B. A., N. Carolina, R. M. Felder. Index of learning Styles Questionnaire. – Learning, 1996, pp. 1-5.
  22. 22. Ouf, S., M. A. Ellatif, S. E. Salama, Y. Helmy. A Proposed Paradigm for Smart Learning Environment Based on Semantic Web. – Computers in Human Behavior, Vol. 72, July 2017, pp. 796-818.10.1016/j.chb.2016.08.030
  23. 23. Provitera, M. J., E. Esendal. Learning and Teaching Styles in Management Education: Identifying, Analyzing, and Facilitating. – Journal of College Teaching & Learning, Vol. 5, January 2008, No 1, pp. 69-78.10.19030/tlc.v5i1.1323
  24. 24. Bourkoukou, O., E. El Bachari, M. El Adnani. A Recommender Model in e-Learning Environment. – Arabian Journal for Science and Engineering, Vol. 42, February 2017, No 2, pp. 607-617.10.1007/s13369-016-2292-2
  25. 25. Tarus, J. K., Z. Niu, D. Kalui. A Hybrid Recommender System for e-Learning Based on Context Awareness and Sequential Pattern Mining. – Soft Computing, Vol. 22, April 2018, No 8, pp. 2449-2461.10.1007/s00500-017-2720-6
  26. 26. Gorakala, S. K., M. Usuelli. Data Mining Techniques Used in Recommender Systems. – Building a Recommendation System with R, Birmingham, UK, Packt Publishing, 2015, pp. 9-15.
  27. 27. Amatriain, X., A. Jaimes, N. Oliver, J. M. Pujol. Data Mining Methods for Recommender Systems. – Recommender Systems Handbook, Boston, MA, USA, Springer, 2011, pp. 39-71.10.1007/978-0-387-85820-3_2
  28. 28. Chen, J., H. Wang, Z. Yan. Evolutionary Heterogeneous Clustering for Rating Prediction Based on User Collaborative Filtering. – Swarm and Evolutionary Computation, Vol. 38, February 2018, pp. 35-41.10.1016/j.swevo.2017.05.008
  29. 29. Margaris, D., C. Vassilakis, P. Georgiadis. Query Personalization Using Social Network Information and Collaborative Filtering Techniques. – Future Generation Computer Systems, Vol. 78, January 2018, pp. 440-450.10.1016/j.future.2017.03.015
  30. 30. Xiao, J., M. Wang, B. Jiang, J. Li. A Personalized Recommendation System with Combinational Algorithm for Online Learning. – Journal of Ambient Intelligence and Humanized Computing, Vol. 9, Jun 2018, No 3, pp. 667-677.10.1007/s12652-017-0466-8
  31. 31. Imran, H., M. Belghis-Zadeh, T. W. Chang, S. Graf. PLORS: A Personalized Learning Object Recommender System. – Vietnam Journal of Computer Science, Vol. 3, February 2016, No 1, pp. 3-13.10.1007/s40595-015-0049-6
  32. 32. Chen, W., Z. Niu, X. Zhao, Y. Li. A Hybrid Recommendation Algorithm Adapted in e-Learning Environments. – World Wide Web, Vol. 17, March 2014, No 2, pp. 271-284.10.1007/s11280-012-0187-z
  33. 33. Klašnja-Milićević, A., B. Vesin, M. Ivanović, Z. Budimac. E-Learning Personalization Based on Hybrid Recommendation Strategy and Learning Style Identification. – Computers & Education, Vol. 56, April 2011, No 3, pp. 885-899.10.1016/j.compedu.2010.11.001
  34. 34. Herlocker, J. L., J. A. Konstan, J. Riedl. Explaining Collaborative Filtering Recommendations. – In: Proc. of 2000 ACM Conference on Computer Supported Cooperative Work, ACM, 2000, pp. 241-250.10.1145/358916.358995
  35. 35. Luo, X., Y. Xia, Q. Zhu. Applying the Learning Rate Adaptation to the Matrix Factorization Based Collaborative Filtering. – Knowledge-Based Systems, Vol. 37, January 2013, pp. 154-164.10.1016/j.knosys.2012.07.016
  36. 36. Wu, H., Z. Zhang, K. Yue, B. Zhang, J. He, L. Sun. Dual-Regularized Matrix Factorization with Deep Neural Networks for Recommender Systems. – Knowledge-Based Systems, Vol. 145, April 2018, pp. 46-58.10.1016/j.knosys.2018.01.003
  37. 37. Zhu, B., F. Ortega, J. Bobadilla, A. Gutiérrez. Assigning Reliability Values to Recommendations Using Matrix Factorization. – Journal of Computational Science, Vol. 26, May 2018, pp. 165-177.10.1016/j.jocs.2018.04.009
  38. 38. Zhang, Y., M. Chen, D. Huang, D. Wu, Y. Li. iDoctor: Personalized and Professionalized Medical Recommendations Based on Hybrid Matrix Factorization. – Future Generation Computer Systems, Vol. 66, January 2017, pp. 30-35.10.1016/j.future.2015.12.001
  39. 39. Qiu, L., S. Gao, W. Cheng, J. Guo. Aspect-Based Latent Factor Model by Integrating Ratings and Reviews for Recommender System. – Knowledge-Based Systems, Vol. 110, October 2016, pp. 233-243.10.1016/j.knosys.2016.07.033
  40. 40. Gemulla, R., E. Nijkamp, P. J. Haas, Y. Sismanis. Large-Scale Matrix Factorization with Distributed Stochastic Gradient Descent. – In: Proc. of 17th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, ACM, 2011, pp. 69-77.10.1145/2020408.2020426
  41. 41. Gogna, A., A. Majumdar. Balancing Accuracy and Diversity in Recommendations Using Matrix Completion Framework. – Knowledge-Based Systems, Vol. 125, Jun 2017, pp. 83-95.10.1016/j.knosys.2017.03.023
  42. 42. Tran, T., K. Lee, Y. Liao, D. Lee. Regularizing Matrix Factorization with User and Item Embeddings for Recommendation. – In: Proc. of 27th ACM International Conference on Information and Knowledge Management, ACM, 2018, pp. 687-696.10.1145/3269206.3271730
  43. 43. Najafabadi, M. K., M. N. R. Mahrin, S. Chuprat, H. M. Sarkan. Improving the Accuracy of Collaborative Filtering Recommendations Using Clustering and Association Rules Mining on Implicit Data. – Computers in Human Behavior, Vol. 67, February 2017, pp. 113-128.10.1016/j.chb.2016.11.010
  44. 44. Nilashi, M., O. Ibrahi, K. Bagherifard. A Recommender System Based on Collaborative Filtering Using Ontology and Dimensionality Reduction Techniques. – Expert Systems with Applications, Vol. 92, February 2018, pp. 507-520.10.1016/j.eswa.2017.09.058
  45. 45. Kim, D., B. J. Yum. Collaborative Filtering Based on Iterative Principal Component Analysis. – Expert Systems with Applications, Vol. 28, May 2005, No 4, pp. 823-830.10.1016/j.eswa.2004.12.037
  46. 46. Benhamdi, S., A. Babouri, R. Chiky. Personalized Recommender System for e-Learning Environment. – Education and Information Technologies, Vol. 22, July 2017, No 4, pp. 1455-1477.10.1007/s10639-016-9504-y
  47. 47. JJ. MAE and RMSE – Which Metric is Better? Accessed 7 February, 2019. http://medium.com/
  48. 48. Yu, P., L. Lin, R. Wang, J. Wang, F. Wang. A Unified Latent Factor Correction Scheme for Collaborative Filtering. – In: 11th International Conference on Fuzzy Systems and Knowledge Discovery (FSKD’14), IEEE, August 2014, pp. 581-586.10.1109/FSKD.2014.6980899
  49. 49. Datta, A., S. Kovaleva, P. Mardziel, S. Sen. Latent Factor Interpretations for Collaborative Filtering. – arXiv preprint arXiv:1711.10816, 2017.
  50. 50. Rogers, M., W. Yao, A. Luxton-Reilly, J. Leinonen, D. Lottridge, P. Denny. Exploring Personalization of Gamification in an Introductory Programming Course. – In: Proc. of 52nd ACM Technical Symposium on Computer Science Education, March 2021, pp. 1121-1127.10.1145/3408877.3432402
  51. 51. Debois, S. 10 Advantages and Disadvantages of Questionnaires. 8 March 2019. https://surveyanyplace.com/blog/questionnaire-pros-and-cons/
  52. 52. Lefever, S., M. Dal, Á. Matthíasdóttir. Online Data Collection in Academic Research: Advantages and Limitations. – British Journal of Educational Technology, Vol. 38, 2007, No 4, pp. 574-582.10.1111/j.1467-8535.2006.00638.x
  53. 53. Beiske, B. Research Methods: Uses and Limitations of Questionnaires, Interviews, and Case Studies. – GRIN Verlag, 2007, pp. 1-11.
DOI: https://doi.org/10.2478/cait-2022-0009 | Journal eISSN: 1314-4081 | Journal ISSN: 1311-9702
Language: English
Page range: 134 - 150
Submitted on: Mar 15, 2021
Accepted on: Oct 22, 2021
Published on: Apr 10, 2022
Published by: Bulgarian Academy of Sciences, Institute of Information and Communication Technologies
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2022 Gina George, Anisha M. Lal, published by Bulgarian Academy of Sciences, Institute of Information and Communication Technologies
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.