Have a personal or library account? Click to login
Robust Gain-Scheduled PID Control: A Parameter Dependent BMI Solution Cover

Robust Gain-Scheduled PID Control: A Parameter Dependent BMI Solution

By: Pengyuan Shao,  Jin Wu and  Songhui Ma  
Open Access
|Mar 2020

References

  1. 1. Ang, K. H., G. Chong, Y. Li. PID Control System Analysis, Design, and Technology. – IEEE Transactions on Control Systems Technology, Vol. 13, 2005, No 4, pp. 559-576.10.1109/TCST.2005.847331
  2. 2. Shamma, J. S., M. Athans. Analysis of Gain Scheduled Control for Nonlinear Plants. – IEEE Transactions on Automatic Control, Vol. 35, 1990, No 8, pp. 898-907.10.1109/9.58498
  3. 3. Leith, D. J., W. E. Leithead. Survey of Gain-Scheduling Analysis and Design. – International Journal of Control, Vol. 73, 2000, No 11, pp. 1001-1025.10.1080/002071700411304
  4. 4. Shamma, J. S., M. Athans. Gain Scheduling: Potential Hazards and Possible Remedies. IEEE Control Systems Magazine, Vol. 12, 1992, No 3, pp. 101-107.10.1109/37.165527
  5. 5. Shamma, J. S. Analysis and Design of Gain Scheduled Control Systems. Doctoral Dissertation. Massachusetts Institute of Technology, 1988.
  6. 6. Shamma, J. S. An Overview of LPV Systems. – In: Control of Linear Parameter Varying Systems with Applications, Springer, USA, 2012, pp. 3-26.10.1007/978-1-4614-1833-7_1
  7. 7. Shao, P., J. Wu, C. Wu et al. Model and Robust Gain-Scheduled PID Control of a Bio-Inspired Morphing UAV Based on LPV Method. – Asian Journal of Control, Vol. 21, 2019, No 4, pp. 1681-1705.10.1002/asjc.2187
  8. 8. Wu, F., X. H. Yang, A. Packard, G. Becker. Induced L 2-Norm Control for LPV System with Bounded Parameter Variation Rates. – In: Proc. of American Control Conference, IEEE, Vol. 3, June 1995, pp. 2379-2383.10.1109/ACC.1995.531398
  9. 9. Becker, G., A. Packard. Robust Performance of Linear Parametrically Varying Systems Using Parametrically-Dependent Linear Feedback. – Systems & Control Letters, Vol. 23, 1994, No 3, pp. 205-215.10.1016/0167-6911(94)90006-X
  10. 10. Mattei, M. Robust Multivariable PID Control for Linear Parameter Varying Systems. – Automatica, Vol. 37, 2001, No 12, pp. 1997-2003.10.1016/S0005-1098(01)00156-X
  11. 11. Bianchi, F. D., R. J. Mantz, C. F. Christiansen. Multivariable PID Control with Set-Point Weighting via BMI Optimisation. – Automatica, Vol. 44, 2008, No 2, pp. 472-478.10.1016/j.automatica.2007.05.021
  12. 12. Veselý, V., A. Ilka. Generalized Robust Gain-Scheduled PID Controller Design for Affine LPV Systems with Polytopic Uncertainty. – Systems & Control Letters, Vol. 105, 2017, pp. 6-13.10.1016/j.sysconle.2017.04.005
  13. 13. Wang, Y., R. Rajamani. A Sequential LMI Approach for Design of a Gain-Scheduled PID Controller for LPV Systems. – In: ASME 2017 Dynamic Systems and Control Conference, American Society of Mechanical Engineers, 2017.10.1115/DSCC2017-5199
  14. 14. Veselý, V., A. Ilka. Design of Robust Gain-Scheduled PI Controllers. – Journal of the Franklin Institute, Vol. 352, 2015, No 4, pp. 1476-1494.10.1016/j.jfranklin.2015.01.009
  15. 15. Shao, P., J. Wu, C. Wu, S. Ma. Model and Robust Gain-Scheduled PID Control of a Bio-Inspired Morphing UAV Based on LPV Method. – Asian Journal of Control, Vol. 21, 2019, pp. 1681-1705.10.1002/asjc.2187
  16. 16. Sturm, J. F. Using SeDuMi 1.02, a MATLAB Toolbox for Optimization over Symmetric Cones. – Optimization Methods and Software, Vol. 11, 1999, No 1-4, pp. 625-653.10.1080/10556789908805766
DOI: https://doi.org/10.2478/cait-2020-0011 | Journal eISSN: 1314-4081 | Journal ISSN: 1311-9702
Language: English
Page range: 156 - 167
Submitted on: Dec 30, 2019
Accepted on: Feb 25, 2020
Published on: Mar 27, 2020
Published by: Bulgarian Academy of Sciences, Institute of Information and Communication Technologies
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2020 Pengyuan Shao, Jin Wu, Songhui Ma, published by Bulgarian Academy of Sciences, Institute of Information and Communication Technologies
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.