Have a personal or library account? Click to login
A Hybrid Technique for Server Consolidation in Cloud Computing Environment Cover

A Hybrid Technique for Server Consolidation in Cloud Computing Environment

By: C. Vijaya and  P. Srinivasan  
Open Access
|Mar 2020

References

  1. 1. Chamas, N., F. Lopez-Pires, B. Baran. Two-Phase Virtual Machine Placement Algorithms for Cloud Computing: An Experimental Evaluation under Uncertainty. – IEEE Conference, 2017.10.1109/CLEI.2017.8226393
  2. 2. Uddin, M., A. A. Rehman. Server Consolidation: An Approach to Make Data Centers Energy Efficient and Green. – International Journal of Scientific and Engineering Research, Vol. 1, 2010, Issue 1.10.14299/ijser.2010.01.002
  3. 3. Ali, H. M., D. C. Lee. A Biogeography-Based Optimization Algorithm for Energy Efficient Virtual Machine Placement. – IEEE Symposium on Swarm Intelligence, 2014.10.1109/SIS.2014.7011800
  4. 4. Panigrahy, R., K. Talwar, L. Uyeda, U. Wieder. Heuristics for Vector Bin Packing, 2011.
  5. 5. Agrawal, S., S. Bose, S. Sundarrajan. Grouping Genetic Algorithm for Solving the Server Consolidation Problem with Conflicts. Genetics and Evolutionary Computation. – In: Proc. of 1st ACM/SIGEVO Summit, ACM, 2009.10.1145/1543834.1543836
  6. 6. Ali, R., Y. Shen, X. Huang, J. Zhang, A. Ali. VMR: Virtual Machine Replacement Algorithm for QoS and Energy-Awareness in Cloud Data Centers. – In: IEEE International Conference on Computational Science and Engineering, 2017.
  7. 7. Liu, X., Z. Zhan, J. D. Deng, Y. Li, T. Gu, J. Zhang. An Energy Efficient Ant Colony System for Virtual Machine Placement in Cloud Computing. – IEEE Transactions on Evolutionary Algortihm, Vol. 22, 2018, Issue 1.10.1109/TEVC.2016.2623803
  8. 8. Dorterler, S., M. Dorterler, S. Ozdemir. Multi-Objective Virtual Machine Placement Optimization for Cloud Computing. – In: IEEE International Symposium on Networks, Computers and Communication, 2017.10.1109/ISNCC.2017.8072013
  9. 9. Sotomayor, B. Provisioning Computational Resources Using Virtual Machines and Leases. PhD Thesis Submitted to the University of Chicago, USA, 2010.
  10. 10. Kansal, N. J., I. Chana. Energy-Aware Virtual Machine Migration for Cloud Computing – A Firefly Optimization Approach. – Journal of Grid Computing, SpringerLink, Vol. 14, 2016, Issue 2, pp. 327-345.10.1007/s10723-016-9364-0
  11. 11. Zhou, A., S. Wang, B. Cheng, Z. Zheng, F. Yang, R. N. Chang, M. R. Lyu, Rajkumar Buyya. Cloud Service Reliability Enhancement via Virtual Machine Placement Optimization. – IEEE Transactions on Services Computing, Vol. 10, 2017, No 6.10.1109/TSC.2016.2519898
  12. 12. Fu, X., C. Zhou. Predicted Affinity Based Virtual Machine Placement in Cloud Computing Environments. – IEEE Transaction on Cloud Computing, Vol. 13, 2014, No 9.
  13. 13. Khosravi, A., L. L. H. Andrew, Rajkumar Buyya. Dynamic VM Placement Method for Minimizing Energy and Carbon Cost in Geographically Distributed Cloud Data Centers. – IEEE Transactions on Sustainable Computing, Vol. 2, 2017, No 2.10.1109/TSUSC.2017.2709980
  14. 14. Gao, Y., H. Guan, Z. Qi, Y. Hou, L. Liu. A Multi-Objective Ant Colony System Algorithm for Virtual Machine Placement in Cloud Computing. – Journal of Computer and System Sciences, Vol. 79, 2013, No 8, pp. 1230-1242.10.1016/j.jcss.2013.02.004
  15. 15. Kumar, D., Dr. Tarni Mandal. Bi-Objective Virtual Machine Placement Using Hybrid of Genetic Algorithm and Particle Swarm Optimization in Cloud Data Center. – International Journal of Applied Engineering Research, Vol. 12, 2017, No 22, pp. 12044-12051. ISSN 0973-4562.
  16. 16. Zhang, J., X. Wang, H. Huang, S. Chen. Clustering Based Virtual Machines Placement in Distributed Cloud Computing. – Future Generation Computer Systems, Elsevier, Vol. 66, 2017, pp.1-10.10.1016/j.future.2016.06.018
  17. 17. Barlaskar, E., N. Ajith Singh, Yumnum, Y. J. Singh. Energy Optimization Methods for Virtual Machine Placement in Cloud Data Center, ADBU. – Journal of Engineering and Technology, 2014.
  18. 18. Tawfeek, M. A., A. B. El-Sisi, A. E. Keshk, F. A. Torkey. Virtual Machine Placement Based on Ant Colony Optimization for Minimizing Resource Wastage. – In: International Conference on Advanced Machine Learning Technologies and Applications (AMLTA’14), 2014, p.153.10.1007/978-3-319-13461-1_16
  19. 19. Alboaneen, D. A., H. Tianfield, Y. Z. Glasgow. Glowworm Swarm Optimization Algorithm for Virtual Machine Placement in Cloud Computing. – In: Proc. of IEEE International Conference on Cloud and Big Data Computing, 2016, pp. 808-814.10.1109/UIC-ATC-ScalCom-CBDCom-IoP-SmartWorld.2016.0129
  20. 20. Speitkamp, B., M. Bichler. A Mathematical Programming Approach for Server Consolidation Problems in Virtualized Data Centers. – IEEE Transactions on Services Computing, 2010, pp. 266-278.10.1109/TSC.2010.25
  21. 21. Sait, S. M., A. Bala, A. H. El-Maleh. Cuckoo Search Based Resource Optimization of Datacenters. – Applied Intelligence, 2015, pp. 1-18.10.1007/s10489-015-0710-x
  22. 22. Riquelme, N., C. V. Lucken, B. Baran. Performance Metrics in Multi-Objective Optimization. – In: IEEE Latin American Computing Conference, 2015.10.1109/CLEI.2015.7360024
  23. 23. Wu, G., M. Tang, Y. C. Tian, W. Li. Energy Efficient Virtual Machine Placement in Data Centers by Genetic Algorithm. – In: International Conference on Neural Information Processing (ICONIP), Neural Information Processing, 2012, pp. 315-323.10.1007/978-3-642-34487-9_39
  24. 24. Zhao, L., L. Lu, Z. Jin, C. Yu. Online Virtual Machine Placement for Increasing Cloud Provider’s Revenue. – IEEE Transactions on Services Computing, Vol. 10, 2017, No 2.10.1109/TSC.2015.2447550
  25. 25. Shabeera, T. P., S. D. Madhukumar, S. M. Salam, K. Muralikrishnan. Optimizing VM Allocation and Data Placement for Data-Intensive Applications in Cloud Using ACO Metaheuristic Algorithm. – International Journal of Engineering Science and Technology, Vol. 20, 2017, Issue 2, pp. 616-628.10.1016/j.jestch.2016.11.006
  26. 26. Gagwero, M. G., L. Caviglione. Model Predictive Control for Energy Efficient, Quality-Aware Virtual Machine Placement. – IEEE Transactions on Automation Science and Engineering, 2018, Issue 1, pp. 1-13.10.1109/TASE.2018.2826723
  27. 27. Jing, H. Z., W. F. Liu, Q. Wang, W. Zhang, Q. Zheng. Power-Aware and Performance – Guaranteed Virtual Machine Placement in the Cloud. – IEEE Transactions on Parallel and Distributed Systems, Vol. 29, 2018, No 6.10.1109/TPDS.2018.2794369
  28. 28. Hung, N. Q., P. D. Nien, N. H. Nam, N. H. Tuong, N. Thoai. A Genetic Algorithm for Power-Aware VirtuaMachine Allocation in Private Cloud. – Lecture Notes in Computer Science, Vol. 7804, 2013.
  29. 29. Sarvesh, Kumar. Discrete Gravitational Search Algorithm for Virtual Machine Placement in Cloud Computing. – International Journal of Pure and Applied Mathematics, Vol. 117, 2017, No 19, pp. 337-342.
  30. 30. Boominathan, P., M. Aramudan, Ra. K. Saravanaguru. Fuzzy Bio-Inspired Hybrid Techniques for Server Consolidation and Virtual Machine Placement in Cloud Environment. – Cybernetics and Information Technologies, Vol. 17, 2017, No 4, pp. 52-68.10.1515/cait-2017-0041
  31. 31. Mirjalili, S., S. M. Mirjalili, A. Lewis. Grey Wolf Optimizer. – Journal in Advances in Engineering Software, Vol. 69, 2014, pp. 46-61, ScienceDirect.10.1016/j.advengsoft.2013.12.007
  32. 32. Joshi, S., J. C. Bansal. Grey Wolf Gravitational Search Algorithm. – International Workshop on Computational Intelligence (IWCI), IEEE, 2016.10.1109/IWCI.2016.7860371
  33. 33. Maryuma, K., S. K. Chang, D. T. Tang. A General Packing Algorithm for Mutidimensional Resource Requirements. – International Journal of Computer and Information Sciences, Vol. 6, 1977, Issue 2, pp. 131-149.10.1007/BF00999302
  34. 34. Rodriguez, L., O. Castillo, J. Soria. Grey Wolf Optimizer with Dynamic Adaptation Parameters Using Fuzzy Logic. – In: IEEE Congress on Evolutionary Computation(CEC), 2016.10.1109/CEC.2016.7744183
  35. 35. Mirjalili, S., S. Saremi, S. M. Mirjalili, L. S. Coelho. Multiobjective Grey Wolf Optimizer: A Novel Algorithm for Multi-Criterion Optimization. – Elsevier Journal of Expert Systems with Applications, 2015.10.1016/j.eswa.2015.10.039
DOI: https://doi.org/10.2478/cait-2020-0003 | Journal eISSN: 1314-4081 | Journal ISSN: 1311-9702
Language: English
Page range: 36 - 52
Submitted on: Oct 31, 2018
Accepted on: Dec 27, 2019
Published on: Mar 27, 2020
Published by: Bulgarian Academy of Sciences, Institute of Information and Communication Technologies
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2020 C. Vijaya, P. Srinivasan, published by Bulgarian Academy of Sciences, Institute of Information and Communication Technologies
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.