Have a personal or library account? Click to login
EnQuad: A Publicly-Available Simulator for Quantum Key Distribution Protocols Cover

EnQuad: A Publicly-Available Simulator for Quantum Key Distribution Protocols

Open Access
|Mar 2020

References

  1. 1. Gisin, N., et al. Quantum Cryptography. – Reviews of Modern Physics,Vol. 74, 2002, No 1, p. 145.10.1103/RevModPhys.74.145
  2. 2. Chou, Y.-H., et al. Quantum Entanglement and Non-Locality Based Secure Computation for Future Communication. – IET Information Security, Vol. 5, 2011, No 1, pp. 69-79.10.1049/iet-ifs.2009.0143
  3. 3. Hanschke, L., et al. Quantum Dot Single-Photon Sources with Ultra-Low Multi-Photon Probability. – NPJ Quantum Information, Vol. 4, 2018, No 1, p. 43.10.1038/s41534-018-0092-0
  4. 4. Sibson, P., et al. Chip-Based Quantum Key Distribution. – Nature Communications, Vol. 8, 2017, p. 13984.10.1038/ncomms13984530976328181489
  5. 5. Liao, S.-K., et al. Satellite-Relayed Intercontinental Quantum Network. – Physical Review Letters, Vol. 120, 2018, No 3, p. 030501.10.1103/PhysRevLett.120.03050129400544
  6. 6. Kohnle, A., A. Rizzoli. Interactive Simulations for Quantum Key Distribution. – European Journal of Physics, Vol. 38, 2017, No 3, p. 035403.10.1088/1361-6404/aa62c8
  7. 7. Niemiec, M., Ł. Romański, M. Święty. Quantum Cryptography Protocol Simulator. – In: International Conference on Multimedia Communications, Services and Security, 2011, Springer.10.1007/978-3-642-21512-4_34
  8. 8. Atashpendar, A., P. Ryan. Simulation and Analysis of QKD (BB84). – Interdisciplinary Center for Security, University of Luxembourg, 2014-2019. https://www.qkdsimulator.com/
  9. 9. Scarani, V., R. Renner. Quantum Cryptography with Finite Resources: Unconditional Security Bound for Discrete-Variable Protocols with One-Way Postprocessing. – Physical Review Letters, Vol. 100, 2008, No 20, p. 200501.10.1103/PhysRevLett.100.20050118518517
  10. 10. Abdelgawad, M. Github EnQuad Repository. 2019. https://github.com/Mo-Abdelgawad/EnQuad-a-QKD-Simulator
  11. 11. Diffie, W., M. Hellman. New Directions in Cryptography. – IEEE Transactions on Information Theory, Vol. 22, 1976, No 6, pp. 644-654.10.1109/TIT.1976.1055638
  12. 12. Scarani, V., et al. Quantum Cryptography Protocols Robust against Photon Number Splitting Attacks for Weak Laser Pulse Implementations. – Physical Review Letters, Vol. 92, 2004, No 5, 057901.10.1103/PhysRevLett.92.05790114995344
  13. 13. Lo, H.-K., X. Ma, K. Chen. Decoy State Quantum Key Distribution. – Physical Review Letters, Vol. 94, 2005, No 23, 230504.10.1103/PhysRevLett.94.23050416090452
  14. 14. Jeong, Y.-C., Y.-S. Kim, Y.-H. Kim. Effects of Depolarizing Quantum Channels on BB84 and SARG04 Quantum Cryptography Protocols. – Laser Physics, Vol. 21, 2011, No 8, pp. 1438-1442.10.1134/S1054660X11150126
  15. 15. Niederberger, A., V. Scarani, N. Gisin. Photon-Number-Splitting Versus Cloning Attacks in Practical Implementations of the Bennett-Brassard 1984 Protocol for Quantum Cryptography. – Physical Review A, Vol. 71, 2005, No 4, 042316.10.1103/PhysRevA.71.042316
  16. 16. Lizama-Pérez, L., J. López, E. De Carlos López. Quantum Key Distribution in the Presence of the Intercept-Resend with Faked States Attack. – Entropy, Vol. 19, 2017, No 1, p. 4.10.3390/e19010004
  17. 17. Elkouss, D., et al. Efficient Reconciliation Protocol for Discrete-Variable Quantum Key Distribution. – In: 2009 IEEE International Symposium on Information Theory, 2009, IEEE.10.1109/ISIT.2009.5205475
  18. 18. Benletaief, N., H. Rezig, A. Bouallegue. Toward Efficient Quantum Key Distribution Reconciliation. – Journal of Quantum Information Science, Vol. 4, 2014, No 2, p. 117.10.4236/jqis.2014.42013
  19. 19. Kern, O., J. M. Renes. Improved One-Way Rates for BB84 and 6-State Protocols. – arXiv preprint arXiv:0712.1494, 2007.10.26421/QIC8.8-9-6
  20. 20. Mehic, M., M. Niemiec, M. Voznak. Calculation of the Key Length for Quantum Key Distribution. – Elektronika i Elektrotechnika, Vol. 21, 2015, No 6, pp. 81-85.10.5755/j01.eee.21.6.13768
  21. 21. Gottesman, D., H.-K. Lo. Proof of Security of Quantum Key Distribution with Two-Way Classical Communications. – IEEE Transactions on Information Theory, Vol. 49, 2003, No 2, pp. 457-475.10.1109/TIT.2002.807289
  22. 22. Smith, G., J. A. Smolin. Additive Extensions of a Quantum Channel. – In: Information Theory Workshop, 2008 (ITW’08), IEEE, 2008.10.1109/ITW.2008.4578688
  23. 23. Ekert, A. K. Quantum Cryptography Based on Bell’s Theorem. – Physical Review Letters, Vol. 67, 1991, No 6, p. 661.10.1103/PhysRevLett.67.66110044956
  24. 24. Hwang, T., K.-C. Lee. EPR Quantum Key Distribution Protocols with Potential 100% Qubit Efficiency. – IET Information Security, Vol. 1, 2007, No 1, pp. 43-45.10.1049/iet-ifs:20060124
DOI: https://doi.org/10.2478/cait-2020-0002 | Journal eISSN: 1314-4081 | Journal ISSN: 1311-9702
Language: English
Page range: 21 - 35
Submitted on: Oct 15, 2019
Accepted on: Jan 6, 2020
Published on: Mar 27, 2020
Published by: Bulgarian Academy of Sciences, Institute of Information and Communication Technologies
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2020 Mohamed S. Abdelgawad, Botrous A. Shenouda, Sameh O. Abdullatif, published by Bulgarian Academy of Sciences, Institute of Information and Communication Technologies
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.