Have a personal or library account? Click to login
On Some Knowledge Measures of Intuitionistic Fuzzy Sets of Type Two with Application to MCDM Cover

On Some Knowledge Measures of Intuitionistic Fuzzy Sets of Type Two with Application to MCDM

Open Access
|Mar 2020

References

  1. 1. Atanassov, K. Intuitionistic Fuzzy Sets. – Fuzzy Sets and Systems, Vol. 20, 1986, pp. 87-96.10.1016/S0165-0114(86)80034-3
  2. 2. Atanassov, K. Intuitionistic Fuzzy Sets of Second Type. – BUSEFAL, Vol. 56, 1993, pp. 66-70.
  3. 3. Atanassov, K. Geometrical Interpretation of the Elements of the Intuitionistic Fuzzy Objects. – Mathematical Foundations of Artificial Intelligence Seminar, 1989, Preprint IM-MFAIS-1-89. Reprinted: International Journal of Bioautomation, Vol. 20, 2016, pp. S27-S40.
  4. 4. Atanassov, K., P. Vassilev. On the Intuitionistic Fuzzy Sets of n-th Type. – In: Advances in Data Analysis with Computational Intelligence Methods. Springer, Cham., 2018, pp. 265-274.10.1007/978-3-319-67946-4_10
  5. 5. Atanassov, K., E.Szmidt, J. Kacprzyk, P. Vassilev. – On Intuitionistic Fuzzy Pairs of n-th Type. – Advances in Data Analysis with Computational Intelligence Methods, Vol. 13, 2017, pp. 265-74.10.1007/978-3-319-67946-4_10
  6. 6. Deschrijver, G., E. E. Kerre. On the Composition of Intuitionistic Fuzzy Relations. –Fuzzy Sets and Systems, Vol. 136, 2003, Issue 3, pp. 333-361.10.1016/S0165-0114(02)00269-5
  7. 7. Garg, H. A New Generalized Improved Score Function of Interval-Valued Intuitionistic Fuzzy Sets and Applications in Expert Systems. – Applied Soft Compuing, Vol. 38, 2016, pp. 886-920.10.1016/j.asoc.2015.10.040
  8. 8. Garg, H. A Novel Correlation Coefficients between Pythagorean Fuzzy Sets and Its Applications to Decision-Making Processes. – International Journal of Intelligent Systems, Vol. 31, 2016, Issue 12, pp. 1234-1252.10.1002/int.21827
  9. 9. Garg, H. Generalized Pythagorean Fuzzy Geometric Aggregation Operators Using Einstein t-Norm and t-Conorm for Multi-Criteria Decision-Making Process. – International Journal of Intelligent Systems, Vol. 32, 2017, Issue 6, pp. 597-630. https://doi.org/10.1002/int.2186010.1002/int.21860
  10. 10. Gou, X. J., Z. S. Xu, P. J. Ren. The Properties of Continuous Pythagorean Fuzzy Information. – International Journal of Intelligent Systems, Vol. 31, 2016, Issue 5, pp. 401-424.10.1002/int.21788
  11. 11. Guo, K. Knowledge Measure for Atanassov’s Intuitionistic Fuzzy Sets. – IEEE Transactions on Fuzzy Systems, Vol. 24, 2016, Issue 5, pp. 1072-1078.10.1109/TFUZZ.2015.2501434
  12. 12. Hung, W. L., M. S. Yang. Fuzzy Entropy on Intuitionistic Fuzzy Sets. – International Journal of Intelligent Systems, Vol. 21, 2006, Issue 4, pp. 443-451.10.1002/int.20131
  13. 13. Hwang, C., M. S. Yang, W. L. Hung. New Similarity Measures of Intuitionistic Fuzzy Sets Based on the Jaccard Index with Its Application to Clustering. – International Journal of Intelligent Systems, Vol. 33, 2018, Issue 8, pp. 1672-1688.10.1002/int.21990
  14. 14. Hwang, C., K. Yoon. Multiple Attribute Decision Making: Methods and Applications. A State of the Art Survey, New York, Springer, 1981.10.1007/978-3-642-48318-9_3
  15. 15. Lalotra, S., S. Singh. On a Knowledge Measure and an Unorthodox Accuracy Measure of an Intuitionistic Fuzzy Set(s) with Their Applications. – International Journal of Computational and Intelligent Systems, Vol. 11, 2018, Issue 1, pp. 1338-1356.10.2991/ijcis.11.1.99
  16. 16. Li, J. Q., G. N. D e n g, H. X. Zeng, W. Y. Zeng. The Relationship between Similarity Measure and Entropy of Intuitionistic Fuzzy Sets. – Information Sciences, Vol. 188, 2012, pp. 314-321.10.1016/j.ins.2011.11.021
  17. 17. Liu, X. D., S. H. Zeng, F. L. Xiaong. Entropy and Subsethood for General Interval-Valued Intuitionistic Fuzzy Sets. – International Conference on Fuzzy Systems and Knowledge Discovery, Vol. 3613, 2005, pp. 42-52.10.1007/11539506_6
  18. 18. Ma, Z. M., Z. S. Xu. Symmetric Pythagorean Fuzzy Weighted Geometric/Averaging Operators and Their Application in Multi-Criteria Decision-Making Problems. – International Journal of Intelligent Systems, Vol. 31, 2016, Issue 12, pp. 1198-1219.10.1002/int.21823
  19. 19. Ngan, R. T., B. C. Cuong, M. Ali. H-max Distance Measure of Intuitionistic Fuzzy Sets in Decision Making. – Applied Soft Computing, Vol. 69, 2018, pp. 393-425.10.1016/j.asoc.2018.04.036
  20. 20. Nguen, H. A New Knowledge-Based Measure for Intuitionistic Fuzzy Sets and Its Application in Multiple Attribute Group Decision Making. – Expert Systems with Applications, Vol. 42, 2015, Issue 22, pp. 8766-8774.10.1016/j.eswa.2015.07.030
  21. 21. Nguyen, X. T., V. D. Ngyuen. Support-Intuitionistic Fuzzy Set: A New Concept for Soft Computing. – International Journal of Intelligent Systems, Vol. 7, 2015, Issue 4, pp. 11-16.10.5815/ijisa.2015.04.02
  22. 22. Parvathi, R., N. Palaniappan. Some Operations on Intuionistic Fuzzy Sets of Second Type. – Notes on Intuitionistic Fuzzy Sets, Vol. 10, 2004, pp. 1-19.
  23. 23. Pal, N. R., H. Bustince, M. Pagola, U. K. Mukherjee, D. P. Goswami, G. Beliakov. Uncertainties with Atanassov’s Intuitionistic Fuzzy Sets: Fuzziness and Lack of Knowledge. – Information Sciences, Vol. 228, 2013, pp. 61-74.10.1016/j.ins.2012.11.016
  24. 24. Peng, X. D., Y. Yang. Some Results for Pythagorean Fuzzy Sets. – International Journal of Intelligent Systems, Vol. 30, 2015, Issue 11, pp. 1133-1160.10.1002/int.21738
  25. 25. Peng, X. D., Y. Yang. Pythagorean Fuzzy Choquet Integral Based MABAC Method for Multiple Attribute Group Decision Making. – International Journal of Intelligent Systems, Vol. 31, 2016, Issue 10, 989-1020.10.1002/int.21814
  26. 26. Peng, X., F. Smarandache. Pythagorean Fuzzy Set: State of the Art and Future Directions. – Artificial Intelligence Review, Vol. 52, 2017, pp. 1873-1927. https://doi.org/10.1007/s10462-017-9596-9.10.1007/s10462-017-9596-9
  27. 27. Peng, X., J. Dai. Approaches to Pythagorean Fuzzy Stochastic Multi-Criteria Decision Making Based on Prospect Theory and Regret Theory with New Distance Measure and Score Function. – International Journal of Intelligent Systems, Vol. 32, 2017, Issue 11, pp. 1187-1214.10.1002/int.21896
  28. 28. Peng, X., H. Yuan, Y. Yang. Pythagorean Fuzzy Information Measures and Their Applications. – International Journal of Intelligent Systems, Vol. 32, 2017, Issue 10, pp. 1-39.10.1002/int.21880
  29. 29. Reformat, M. Z., R. R. Yager. Suggesting Recommendations Using Pythagorean Fuzzy Sets Illustrated Using Netflix Movie Data. – In: Information Processing and Management of Uncertainty in Knowledge-Based Systems. Berlin, Springer, 2014, pp. 546-556.10.1007/978-3-319-08795-5_56
  30. 30. Singh, S., S. Lalotra, S. Sharma. Dual Concepts in Fuzzy Theory: Entropy and Knowledge Measure. – International Journal of Intelligent Systems, Vol. 34, 2019, Issue 5, pp.1034-1059.10.1002/int.22085
  31. 31. Szmidt, E., J. Kacprzyk. Entropy for Intuitionistic Fuzzy Sets. – Fuzzy Sets and Systems, Vol. 118, 2001, Issue 3, pp. 467-477.10.1016/S0165-0114(98)00402-3
  32. 32. Szmidt, E., J. Kacprzyk. Some Problems with Entropy Measures for the Atanassov Intuitionistic Fuzzy Sets. – Lecture Notes on Computer Science, Vol. 4578, 2007, pp. 291-297.10.1007/978-3-540-73400-0_36
  33. 33. Szmidt, E., J. Kacprzyk, P. Bujnowski. How to Measure the Amount of Knowledge Conveyed by Atanassov’s Intuitionistic Fuzzy Sets. – Information Sciences, Vol. 257, 2014, 276-285.10.1016/j.ins.2012.12.046
  34. 34. Thao, N. X. A New Correlation Coefficient of the Intuitionistic Fuzzy Sets and Its Application. – Journal of Intelligent and Fuzzy Systems, Vol. 35, 2018, Issue 2, pp. 1959-1968.10.3233/JIFS-171589
  35. 35. Thao, N. X., M. Ali, F. Smarandache. An Intuitionistic Fuzzy Clustering Algorithm Based on a New Correlation Coefficient with Application in Medical Diagnosis. – Journal of Intelligent and Fuzzy Systems, Vol. 36, 2019, Issue 1, pp. 189-198.10.3233/JIFS-181084
  36. 36. Thao, N. X., F. Smarandache. A New Fuzzy Entropy on Pythagorean Fuzzy Sets. – Journal of Intelligent and Fuzzy Systems, Vol. 37, 2019, Issue 1, pp. 1065-1074. DOI:10.3233/JIFS-182540.10.3233/JIFS-182540
  37. 37. Wei, G., Y. Wei. Similarity Measures of Pythagorean Fuzzy Sets Based on the Cosine Function and Their Applications. – International Journal of Intelligent Systems, Vol. 33, 2018, Issue 3, pp. 634-652.10.1002/int.21965
  38. 38. Wei, C. P., P. Wang, Y. Z. Zhang. Entropy, Similarity Measure of Interval-Valued Intuitionistic Fuzzy Sets and Their Applications. – Information Sciences, Vol. 181, 2011, Issue 19, pp. 4273-4286.10.1016/j.ins.2011.06.001
  39. 39. Xue, W., Z. Xu, X. Zhang, X. Tian. Pythagorean Fuzzy LINMAP Method Based on the Entropy Theory for Railway Project Investment Decision Making. – International Journal of Intelligent Systems, Vol. 33, 2017, Issue 1, pp. 93-125.10.1002/int.21941
  40. 40. Yager, R. R., A. M. Abbasov. Pythagorean Membership Grades, Complex Numbers and Decision Making. – International Journal of Intelligent Systems, Vol. 28, 2013, Issue 5, pp. 436-452.10.1002/int.21584
  41. 41. Yager, R. R. Pythagorean Membership Grades in Multi-Criteria Decision Making. – IEEE Transactions on Fuzzy Systems, Vol. 22, 2014, Issue 4, pp. 958-965.10.1109/TFUZZ.2013.2278989
  42. 42. Yang, M. S., Z. Hussain. Fuzzy Entropy for Pythagorean Fuzzy Sets with Application to Multi-Criterion Decision-Making. – Complexity, Vol. 2018, article ID 2832839, 14 p. https://doi.org/10.1155/2018/283283910.1155/2018/2832839
  43. 43. Ye, J. Two Effective Measures of Intuitionistic Fuzzy Entropy. – Computing, Vol. 87, 2010, Issue 1-2, pp. 55-62.10.1007/s00607-009-0075-2
  44. 44. Ye, J. Cosine Similarity Measures for Intuitionistic Fuzzy Sets and Their Applications. – Mathematical and Computer Modelling, Vol. 53, 2011, pp. 91-97.10.1016/j.mcm.2010.07.022
  45. 45. Zadeh, L. A. Fuzzy Sets. – Information and Control, Vol. 8, 1965, Issue 3, pp. 338-356.10.1016/S0019-9958(65)90241-X
  46. 46. Zeng, W. Y., H. X. Li. Relationship between Similarity Measure and Entropy of Interval-Valued Fuzzy Sets. – Fuzzy Sets and Systems, Vol. 157, 2006, Issue 11, pp. 1477-1484.10.1016/j.fss.2005.11.020
  47. 47. Zhang, Q. S., S. Y. Jiang, B. G. Jia, S. H. Luo. Some Information Measures for Interval-Valued Intuitionistic Fuzzy Sets. – Information Sciences, Vol. 180, 2010, Issue 24, pp. 5130-5145.10.1016/j.ins.2010.08.038
  48. 48. Zhang, Q. S., S. Y. Jiang. A Note on Information Entropy Measures for Vague Sets and Its Applications. – Information Sciences, Vol. 178, 2008, Issue 21, pp. 4184-4191.10.1016/j.ins.2008.07.003
  49. 49. Zhang, X. L., Z. S. Xu. Extension of TOPSIS to Multiple Criteria Decision Making with Pythagorean Fuzzy Sets. – International Journal of Intelligent Systems, Vol. 29, 2014, Issue 12, pp. 1061-1078.10.1002/int.21676
  50. 50. Zhang, X. A Novel Approach Based on Similarity Measure for Pythagorean Fuzzy Multiple Criteria Group Decision-Making. – International Journal of Intelligent Systems, Vol. 31, 2016, Issue 6, pp. 593-611.10.1002/int.21796
DOI: https://doi.org/10.2478/cait-2020-0001 | Journal eISSN: 1314-4081 | Journal ISSN: 1311-9702
Language: English
Page range: 3 - 20
Submitted on: Nov 27, 2019
Accepted on: Feb 21, 2020
Published on: Mar 27, 2020
Published by: Bulgarian Academy of Sciences, Institute of Information and Communication Technologies
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2020 Surender Singh, Sumita Lalotra, Abdul Haseeb Ganie, published by Bulgarian Academy of Sciences, Institute of Information and Communication Technologies
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.