Have a personal or library account? Click to login
Optimisation of System Dynamics Models Using a Real-Coded Genetic Algorithm with Fuzzy Control Cover

Optimisation of System Dynamics Models Using a Real-Coded Genetic Algorithm with Fuzzy Control

Open Access
|Jun 2019

References

  1. 1. Akopov, A. S., L. A. Beklaryan, M. Thakur, B. D. Verma. Parallel Multi-Agent Real-Coded Genetic Algorithm for Large-Scale Black-Box Single-Objective Optimisation. – Knowledge-Based Systems, Vol. 174, 2019, pp. 103-122.10.1016/j.knosys.2019.03.003
  2. 2. Conn, A. R., K. Scheinberg, L. N. Vicente. Introduction to Derivative-Free Optimization. MPS-SIAM Book Series on Optimization. Philadelphia, SIAM, 2009.10.1137/1.9780898718768
  3. 3. Audet, C., M. Kokkolaras. Blackbox and Derivative-Free Optimization: Theory, Algorithms and Applications. – Optimization and Engineering, Vol. 17, 2016, No 1, pp. 1-2.10.1007/s11081-016-9307-4
  4. 4. Forrester, J. W. Industrial Dynamics – A Major Breakthrough for Decision Makers. – Harvard Business Review, Vol. 36, 1958, No 4, pp. 37-66.
  5. 5. Akopov, A. S. Designing of Integrated System-Dynamics Models for an Oil Company. – International Journal of Computer Applications in Technology, Vol. 45, 2012, No 4, pp. 220-230.10.1504/IJCAT.2012.051122
  6. 6. Ge, Y., J. B. Yang, N. Proudlove, M. Spring. System Dynamics Modelling for Supply-Chain Management: A Case Study on a Supermarket Chain in the UK. – International Transactions in Operational Research, Vol. 11, 2004, No 5, pp. 495-509.10.1111/j.1475-3995.2004.00473.x
  7. 7. Keloharju, R., E. F. Wolstenholme. The Basic Concepts of System Dynamics Optimization. – Systems Practice, Vol. 1, 1988, No 1, pp. 65-86.10.1007/BF01059889
  8. 8. Dangerfield, B. System Dynamics Models, Optimization. – In: R. Meyers, Ed. Encyclopedia of Complexity and Systems Science. New York, NY, Springer, 2013.10.1007/978-3-642-27737-5_542-4
  9. 9. Fletcher, R. Practical Methods of Optimization. 2nd ed. New York, John Wiley & Sons, 1987.
  10. 10. Byrd, R., P. Lu, J. Nocedal, C. Zhu. A Limited Memory Algorithm for Bound Constrained Optimization. – SIAM Journal on Scientific Computing, Vol. 16, 1995, No 5, pp. 1190-1208.10.1137/0916069
  11. 11. Khachatryan, N. K., A. S. Akopov. Model for Organizing Cargo Transportation with an Initial Station of Departure and a Final Station of Cargo Distribution. – Business Informatics, Vol. 1, 2017, No 39, pp. 25-35.10.17323/1998-0663.2017.1.25.35
  12. 12. Akopov, A. S. Parallel Genetic Algorithm with Fading Selection. – International Journal of Computer Applications in Technology, Vol. 49, 2014, No 3/4, pp. 325-331.10.1504/IJCAT.2014.062368
  13. 13. Akopov, A. S., M. A. Hevencev. A Multi-Agent Genetic Algorithm for Multi-Objective Optimization. – In: Proc. of IEEE International Conference on Systems, Man and Cybernetics, Manchester: IEEE, 2013, pp. 1391-1395.10.1109/SMC.2013.240
  14. 14. Akopov, A. S., L. A. Beklaryan, A. K. Saghatelyan. Agent-Based Modelling of Interactions between air Pollutants and Greenery Using a Case Study of Yerevan, Armenia. – Environmental Modelling and Software, Vol. 116, 2019, pp. 7-25.10.1016/j.envsoft.2019.02.003
  15. 15. Akopov, A. S., L. A. Beklaryan, A. K. Saghatelyan. Agent-Based Modelling for Ecological Economics: A Case Study of the Republic of Armenia. – Ecological Modelling, Vol. 346, 2017, pp. 99-118.10.1016/j.ecolmodel.2016.11.012
  16. 16. Deep, K., M. Thakur. A New Crossover Operator for Real Coded Genetic Algorithms. – Applied Mathematics and Computation, Vol. 188, 2007, No 1, pp. 895-911.10.1016/j.amc.2006.10.047
  17. 17. Herrera, F., M. Lozano. Gradual Distributed Real-Coded Genetic Algorithms. – IEEE Transactions on Evolutionary Computation, Vol. 4, 2000, No 1, pp. 43-63.10.1109/4235.843494
  18. 18. E. Sanchez, T. Shibata, L. A. Zadeh, Eds. Genetic Algorithms and Fuzzy Logic Systems. Vol. 7. Soft Computing Perspectives. River Edge, NJ, USA, World Scientific Publishing Co., Inc., 1997.10.1142/2896
  19. 19. Kramer, O. A Brief Introduction to Continuous Evolutionary Optimization. – In: Springer Briefs in Computational Intelligence, Springer, 2014.10.1007/978-3-319-03422-5
  20. 20. Zitzler, E., L. Thiele. Multiobjective Evolutionary Algorithms: A Comparative Case Study and the Strength Pareto Approach. – IEEE Transactions on Evolutionary Computation, Vol. 3, 1999, No. 4, pp. 275-271.10.1109/4235.797969
  21. 21. Belev, B., D. Dimitranov, A. Spasov, A. Ivanov. Application of Information Technologies and Algorithms in Ship Passage Planning. – Cybernetics and Information Technologies, Vol. 19, 2019, No 1, pp. 190-200.10.2478/cait-2019-0011
  22. 22. Georgieva, P. Genetic Fuzzy System for Financial Management. – Cybernetics and Information Technologies, Vol. 18, 2018, No 2, pp. 22-35.10.2478/cait-2018-0025
  23. 23. Beklaryan, A. L., A. S. Akopov. Simulation of Agent-Rescuer Behaviour in Emergency Based on Modified Fuzzy Clustering. – In: Proc. of International Joint Conference on Autonomous Agents and Multigene Systems, AAMAS, 2016, pp. 1275-1276.
  24. 24. Deep, K., M. Thakur. A New Crossover Operator for Real Coded Genetic Algorithms. – Applied Mathematics and Computation, Vol. 188, 2007, No 1, pp. 895-911.10.1016/j.amc.2006.10.047
  25. 25. Kumar, A., K. Deb. Real-Coded Genetic Algorithms with Simulated Binary Crossover: Studies on Multimodal and Multiobjective Problems. – Complex Systems, Vol. 9, 1995, pp. 431-454.
  26. 26. Deep, K., M. Thakur. A New Mutation Operator for Real Coded Genetic Algorithms. – Applied Mathematics and Computation, Vol. 193, 2007, No 1, pp. 211-230.10.1016/j.amc.2007.03.046
  27. 27. Metropolis, N., S. Ulam. The Monte Carlo Method. – Journal of the American Statistical Association, Vol. 44, 1949, No 247, pp. 335-341.10.1080/01621459.1949.1048331018139350
  28. 28. Karaivanova, A., A. Alexandrov, T. Gurov, S. Ivanovska. On the Monte Carlo Matrix Computations on Intel MIC Architecture. – Cybernetics and Information Technologies, Vol. 17, 2017, No 5, pp. 49-59.10.1515/cait-2017-0054
  29. 29. Kumar, A., D. Kumar, S. K. Jarial. A Review on Artificial Bee Colony Algorithms and Their Applications to Data Clustering. – Cybernetics and Information Technologies, Vol. 17, 2017, No 3, pp. 3-28.10.1515/cait-2017-0027
  30. 30. Kumar, A., M. Thakur, G. Mittal. A New Ants Interaction Scheme for Continuous Optimization Problems. – International Journal of Systems Assurance Engineering, Vol. 9, 2018, No 4, pp. 784-801.10.1007/s13198-017-0651-3
  31. 31. Romasevych, Y., V. A. Loveikin. Novel Multi-Epoch Particle Swarm Optimization Technique. – Cybernetics and Information Technologies, Vol. 18, 2018, No 3, pp. 62-74.10.2478/cait-2018-0039
  32. 32. Noack, M. M., S. W. Funke. Hybrid Genetic Deflated Newton Method for Global Optimisation. – Journal of Computational and Applied Mathematics, Vol. 325, 2017, pp. 97-112.10.1016/j.cam.2017.04.047
DOI: https://doi.org/10.2478/cait-2019-0017 | Journal eISSN: 1314-4081 | Journal ISSN: 1311-9702
Language: English
Page range: 87 - 103
Submitted on: Apr 26, 2019
Accepted on: May 20, 2019
Published on: Jun 18, 2019
Published by: Bulgarian Academy of Sciences, Institute of Information and Communication Technologies
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2019 Gayane L. Beklaryan, Andranik S. Akopov, Nerses K. Khachatryan, published by Bulgarian Academy of Sciences, Institute of Information and Communication Technologies
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.