Have a personal or library account? Click to login
A Study on Various Techniques Involved in Gender Prediction System: A Comprehensive Review Cover

A Study on Various Techniques Involved in Gender Prediction System: A Comprehensive Review

Open Access
|Jun 2019

References

  1. 1. Boyadzhieva, D., G. Gluhchev. A Combined Method for On-Line Signature Verification. – Cybernetics and Information Technologies, Vol. 14, 2014, No 2, pp. 92-97.10.2478/cait-2014-0022
  2. 2. Dafe, S. G., S. S. Chavhan. Optical Character Recognition Using Image Processing. – IRJET, Vol. 5, 2018, Isue 3, pp. 962-964.
  3. 3. Kaur, S. Gurmukhi Printed Character Recognition Using Hierarchical Centroid Method and SVM. – International Journal of Computer Applications, Vol. 149, 2016, No 3, pp. 24-27.10.5120/ijca2016911367
  4. 4. Sharma, A., S. Khare, S. Chavan. A Review on Handwritten Character Recognition. – IJCST, Vol. 8491, 2017, Issue 1, pp. 71-75.
  5. 5. Fakhr, M. W. Arabic Optical Character Recognition (OCR). – Systems Overview, Vol. 2011, January 2011.
  6. 6. Rubeena, L. R. B. A Comprehensive Study on Handwritten Character Recognition System. – IOSR Journal of Computer Engineering Ver. IV, Vol. 17, 2015, No 2, pp. 2278-661.
  7. 7. Yadav, P. Handwriting Recognition System – A Review. – International Journal of Computer Applications, Vol. 114, 2015, No 19, pp. 36-40.
  8. 8. Goldberg, L. R., D. Sweeney, P. F. Merenda, J. E. Hughes. Demographic Variables and Personality: The Effects of Gender, Age, Education, and Ethnic/racial Status on Self-Descriptions of Personality Attributes. – Person. Individ. Diff., Vol. 24, 1998, No 3, pp. 393-403.10.1016/S0191-8869(97)00110-4
  9. 9. Liwicki, M., A. Schlapbach, P. Loretan, H. Bunke. Automatic Detection of Gender and Handedness from On-Line Handwriting. – Journal of Social Psychology, 2007, No March, pp. 179-183.
  10. 10. Liwicki, M., A. Schlapbach, H. Bunke. Automatic Gender Detection Using On-Line and Off-Line Information. – Pattern Analysis and Applications, Vol. 14, 2011, No 1, pp. 87-92.10.1007/s10044-010-0178-6
  11. 11. Xie, Q., Q. Xu. Gender Prediction from Handwriting. – Data Mining Course Project. – Fall 2013. 2013, pp. 10-13.
  12. 12. Ahmed, M., A. Ghulam, H. Afzal, I. Siddiqi. Improving handwriting Based Gender Classification Using Ensemble Classifiers. – Expert Systems with Applications, Vol. 85, 2017, pp. 158-168.10.1016/j.eswa.2017.05.033
  13. 13. Marti, U. V., H. Bunke. The IAM-Database: An English Sentence Database for Off-line Handwriting Recognition. – International Journal on Document Analysis and Recognition, Vol. 5, 2003, No 1, pp. 39-46.10.1007/s100320200071
  14. 14. Sokic, E., A. Salihbegovic, M. Ahic-Djokic. Analysis of Off-Line Handwritten Text Samples of Different Gender Using Shape Descriptors. – In: IX International Symposium on Telecommunications (BIHTEL), 2012, pp. 1-6.10.1109/BIHTEL.2012.6412086
  15. 15. Al Maadeed, S., W. Ayouby, A. Hassaïn e, J. Mohamad Aljaam. QUWI: An Arabic and English Handwriting Dataset for Offline Writer Identification. – In: IIEEE International Conference on Frontiers in Handwriting Recognition QUWI, Vol. 95, 2012, No 15, pp. 742-747.10.1109/ICFHR.2012.256
  16. 16. Hassaïne, A., S. Al Maadeed, J. Aljaam, A. Jaoua. ICDAR2013 – Competition on Gender Prediction from Handwriting. 2013.10.1109/ICDAR.2013.286
  17. 17. Al Maadeed, S., A. Hassaine. Automatic Prediction of Age, Gender, and Nationality in Off-line Handwriting. – Eurasip Journal on Image and Video Processing, 2014, pp. 1-10.10.1186/1687-5281-2014-10
  18. 18. Siddiqi, I., C. Djeddi, A. Raza. Automatic Analysis of Handwriting for Gender Classification. – Pattern Analysis and Applications, Vol. 18, 2015, No 4, pp. 887-899.10.1007/s10044-014-0371-0
  19. 19. Djeddi, C., A. Gattal, L. Souici-Meslati, I. Siddiqi, Y. Chibani, H. El Abed. LAMIS-MSHD: A Multi-Script Offline Handwriting Database. – In: Proc. of International Conference on Frontiers in Handwriting Recognition (ICFHR’14), Vol. 2014, December 2014, pp. 93-97.10.1109/ICFHR.2014.23
  20. 20. Bouadjenek, N., H. Nemmour, Y. Chibani. HOG and LBP Features for Writer’s Gender Classification. – International Conference on Electrical Engineering and Control Applications, 2016, pp. 317-325.10.1007/978-3-319-48929-2_24
  21. 21. Bouadjenek, N. H. N., Y. C. Age. Gender and Handedness Prediction from Handwriting Using Gradient Features. – Complexity, 2015, pp. 1116-1120.10.1109/ICDAR.2015.7333934
  22. 22. Mahmoud, S. A., I. Ahmad, M. Alshayeb, W. G. Al-Khatib, T. U. Braunschweig, S. A. Mahmoud, I. Ahmad, M. Alshayeb, W. G. Al-Khatib, M. T. Parvez, G. A. Fink, V. Margner, H. E. Abed. KHATT: Arabic Off-line Handwritten Text Database. – In: International Conference on Frontiers in Handwriting Recognition (ICFHR’12), 2012, pp. 449-454.10.1109/ICFHR.2012.224
  23. 23. Mahmoud, S. A., I. Ahmad, W. G. Al-Khatib, M. Alshayeb, M. Tanvir Parvez, V. Märgner, G. A. Fink. KHATT: An Open Arabic Off-line Handwritten Text Database. – Pattern Recognition, Vol. 47, 2014, No 3, pp. 1096-1112.10.1016/j.patcog.2013.08.009
  24. 24. Mirza, A., M. Moetesum, I. Siddiqi, C. Djeddi. Gender Classification from Off-line Handwriting Images Using Textural Features. – In: Proc. of International Conference on Frontiers in Handwriting Recognition, ICFHR, 2017, pp. 395-398.10.1109/ICFHR.2016.0080
  25. 25. Gattal, A., C. Djeddi, I. Siddiqi, Y. Chibani. Gender Classification from Offline Multi-Script Handwriting Images Using Oriented Basic Image Features (oBIFs). – Expert Systems with Applications, Vol. 99, 2018, No February, pp. 155-167.10.1016/j.eswa.2018.01.038
  26. 26. Grewal, P. K., D. Prashar. Behavior Prediction through Handwriting Analysis. – InternatIonal Journal of Computer Science and Technology, Vol. 3, 2012, No 2, pp. 520-523.
  27. 27. Rizvi, F. Personality Prediction through Offline Handwriting Analysis. 2017, No February.
  28. 28. Tett, R. P., C. A. Palmer. The Validity of Handwriting Elements in Relation to Self-Report Personality Trait Measures. – Personality and Individual Differences, Vol. 22, 1997, No 1, pp. 11-18.10.1016/S0191-8869(96)00183-3
  29. 29. Warner, R. M., D. B. Sugarman. Attributions of Personality Based on Physical Appearance, Speech, and Handwriting. Vol. 50, 1986, No 4, pp. 792-799.10.1037/0022-3514.50.4.792
  30. 30. Burr, V. Judging Gender from Samples of Adult Handwriting: Accuracy and Use of Cues. – Journal of Social Psychology, Vol. 142, 2002, No 6.10.1080/0022454020960392912450344
  31. 31. Rubin, D. L., K. Greene. Gender-Typical Style in Written Language. – Source: Research in the Teaching of English, Vol. 26, 1992, No 1, pp. 7-40.
  32. 32. Koppel, M., S. Argamon, S. A. Rachel. Automatically Categorizing Written Texts by Author Gender. – Literary and Linguistic Computing, Vol. 17, 2002, No 4, pp. 401-412.10.1093/llc/17.4.401
  33. 33. Marti, U.-V., H. Bunke. A Full English Sentence Database for Off-Line Handwriting Recognition. – Icdar, Vol. 1999, pp. 705-708.10.1109/ICDAR.1999.791885
  34. 34. Bangare, S. L., A. Dubal, P. S. Bangare, D. S. T. P. Reviewing Otsu’s Method for Image Thresholding. – International Journal of Applied Engineering Research, Vol. 10, 2015, No August 2016, pp. 21777-21783.10.37622/IJAER/10.9.2015.21777-21783
  35. 35. Jaeger, S., S. Manke, J. Reichert, A. Waibel. On-line Handwriting Recognition: The NPen ++ Recognizer. – Int. J. Doc. Anal. Recognit., March 2001, No May 2017, pp. 169-180.10.1007/PL00013559
  36. 36. Al-Maadeed, S., A. Hassaine, A. Bouridane, M. A. Tahir. Novel Geometric Features for Off-Line Writer Identification. – Pattern Analysis and Applications, Vol. 19, 2016, No 3, pp. 699-708.10.1007/s10044-014-0438-y
  37. 37. Koppenhaver, K. M. Forensic Document Examination: Principles and Practice. – Forgery, 2007, pp. 55-60.
  38. 38. Siddiqi, I., N. Vincent. Text Independent Writer Recognition Using Redundant Writing Patterns with Contour-Based Orientation and Curvature Features. – Pattern Recognition, Vol. 43, 2010, No 11, pp. 3853-3865.10.1016/j.patcog.2010.05.019
  39. 39. Hassaïne, A., S. Al-Maadeed, A. Bouridane. A Set of Geometrical Features for Writer Identification. – Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), Vol. 7667 LNCS, 2012, pp. 584-591.10.1007/978-3-642-34500-5_69
  40. 40. Jiang, N. Research on Gradient Local Binary Patterns Method for Human Detection. 2013, No February.
  41. 41. Dalal, N., B. Triggs, N. Dalal, B. Triggs. Histograms of Oriented Gradients for Human Detection. – IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2005, pp. 886-893.
  42. 42. Yilmaz, M. B., B. Yanikoglu, C. Tirkaz, A. Kholmatov. Offline Signature Verification Using Classifier Combination of HOG and LBP Features. – In: 2011 International Joint Conference on Biometrics, (IJCB’2011), 2011, No October 2015.10.1109/IJCB.2011.6117473
  43. 43. Déniz, O., G. Bueno, J. Salido, F. De Torre. Face Recognition Using Histograms of Oriented Gradients.pdf. Vol. 32, 2011, pp. 1598-1603.10.1016/j.patrec.2011.01.004
  44. 44. Bai, L., Y. Li, M. Hui. Face Recognition Based on Wavelet Kernel Non-Negative Matrix Factorization. – Cybernetics and Information Technologies, Vol. 14, 2014, No 3, pp. 37-45.10.2478/cait-2014-0031
  45. 45. Lowe, D. G. Distinctive Image Features from Scale-Invariant Keypoints. – International Journal of Computer Vision, Vol. 60, 2004, No 2, pp. 1-28.10.1023/B:VISI.0000029664.99615.94
  46. 46. Ulusoy, I., C. Bishop. Comparison of Generative and Discriminative Techniques for Object Detection and Classification. – Toward Category-Level Object Recognition, 2006, pp. 173-195.10.1007/11957959_9
  47. 47. Kumar, R., S. K. Srivastava. Machine Learning: A Review on Binary Classification. – International Journal of Computer Applications, Vol. 160, 2017, No 7, pp. 11-15.10.5120/ijca2017913083
  48. 48. Strecht, P., L. Cruz, C. Soares, J. Mendes-Moreira, R. Abreu. PER-08: A Comparative Study of Classification and Regression Algorithms for Modelling Students’ Academic Performance. – Portugal, 2015, pp. 392-395.
  49. 49. Dong, H., G. Jian. Parameter Selection of a Support Vector Machine, Based on a Chaotic Particle Swarm Optimization Algorithm. – Cybernetics and Information Technologies, Vol. 15, 2015, No 3, pp. 140-149.10.1515/cait-2015-0047
  50. 50. Huanrui, H. New Mixed Kernel Functions of SVM Used in Pattern Recognition. – Cybernetics and Information Technologies, Vol. 16, 2016, No 5, pp. 5-14.10.1515/cait-2016-0047
  51. 51. Schölkopf, B., K.-K. Sung, C. J. C. Burges, F. Girosi, P. Niyogi, T. Poggio. Comparing Support Vector Machines with Gaussian Kernels to Radial Basis Function Classifier. Vol. 45, 1997, No 11, pp. 2758-2765.10.1109/78.650102
  52. 52. Imandoust, S. B., M. Bolandraftar. Application of k-Nearest Neighbor (kNN) Approach for Predicting Economic Events: Theoretical Background. – Int. Journal of Engineering Research and Applications, Vol. 3, 2013, No 5, pp. 605-610.
  53. 53. Cutler, A. Random Forests for Survival, Regression, and Classification. – Utah State University. Ovronnaz, Switzerland, 2010, pp. 1-129.
  54. 54. Kishor, D. R., N. B. Venkateswarlu. Hybridization of Expectation-Maximization and k-Means Algorithms for Better Clustering Performance. – Cybernetics and Information Technologies, Vol. 16, 2016, No 2, pp. 16-34.10.1515/cait-2016-0017
  55. 55. Parvez, T. M., S. A. Mahmoud. Arabic Handwriting Recognition Using Structural and Syntactic Pattern Attributes. – Pattern Recognition, Vol. 46, 2013, No 1, pp. 141-154.10.1016/j.patcog.2012.07.012
  56. 56. Gupta, B., P. Uttarakhand, I. A. Rawat. Analysis of Various Decision Tree Algorithms for Classification in Data Mining. – International Journal of Computer Applications, Vol. 163, 2017, No 8, pp. 975-987.10.5120/ijca2017913660
  57. 57. Hassanat, A. B., M. A. Abbadi, A. A. Alhasanat. Solving the Problem of the k Parameter in the kNN Classifier Using an Ensemble Learning Approach. – International Journal of Computer Science and Information Security (IJCSIS), Vol. 12, 2014, No 8, pp. 33-39.
  58. 58. Guo, G., H. Wang, D. Bell, Y. Bi, K. Greer. Using kNN Model for Automatic Text Categorization. – Soft Computing, Vol. 10, 2006, No 5, pp. 423-430.10.1007/s00500-005-0503-y
  59. 59. Patil, A. B., J. Shaikh. OTSU Thresholding Method for Flower Image Segmentation. 2016, pp. 1-6.
  60. 60. Al-Ma’adeed, S., D. Elliman, C. A. Higgins. A Data Base for Arabic Handwritten Text Recognition Research. – In: Proc. of International Workshop on Frontiers in Handwriting Recognition, IWFHR, Vol. 1, 2002, No 1, pp. 485-489.
DOI: https://doi.org/10.2478/cait-2019-0015 | Journal eISSN: 1314-4081 | Journal ISSN: 1311-9702
Language: English
Page range: 51 - 73
Submitted on: Dec 9, 2018
Accepted on: Apr 2, 2019
Published on: Jun 18, 2019
Published by: Bulgarian Academy of Sciences, Institute of Information and Communication Technologies
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2019 Payal Maken, Abhishek Gupta, Manoj Kumar Gupta, published by Bulgarian Academy of Sciences, Institute of Information and Communication Technologies
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.