Have a personal or library account? Click to login
New Proposed Fusion between DCT for Feature Extraction and NSVC for Face Classification Cover

New Proposed Fusion between DCT for Feature Extraction and NSVC for Face Classification

By: B. Nassih,  M. Ngadi,  A. Amine and  A. El-Attar  
Open Access
|Jun 2018

References

  1. 1. Amine, A., S. Ghouzali, M. Rziza et al. Investigation of Feature Dimension Reduction Based DCT/SVM for Face Recognition. – In: IEEE Symposium on Computers and Communications, 2008 (ISCC’2008), IEEE, 2008, pp. 188-193.10.1109/ISCC.2008.4625662
  2. 2. Chen, P.-Y., C.-C. Huang, C.-Y. Lien et al. An Efficient Hardware Implementation of HOG Feature Extraction for Human Detection. – IEEE Transactions on Intelligent Transportation Systems, Vol. 15, 2014, No 2, pp. 656-662.10.1109/TITS.2013.2284666
  3. 3. Teoh, S. S., T. Braunl. Performance Evaluation of HOG and Gabor Features for Vision-Based Vehicle Detection. – In: IEEE International Conference on Control System, Computing and Engineering (ICCSCE’15), IEEE 2015, pp. 66-71.10.1109/ICCSCE.2015.7482159
  4. 4. Ngadi, M., A. Amine, H. Hachimi, A. El-Attar. A New Optimal Approach for Breast Cancer Diagnosis Classification. – International Journal of Imaging and Robotics, Vol. 16, 2016, Issue No 4, pp. 25-36.
  5. 5. Gupta, I., S. Kaur, P. Sahni et al. Novel Human Age Estimation System Based on DCT Features and Locality-Ordinal Information. – In: International Conference on. Inventive Computation Technologies (ICICT’16), 2016, IEEE, pp. 1-4.10.1109/INVENTIVE.2016.7823181
  6. 6. Yang, X., A. Cao, Q. Song, G. Schaefer, Y. Su. Vicinal Support Vector Classifier Using Supervised Kernel-Based Clustering. – Artificial Intelligence in Medicine, 2014.10.1016/j.artmed.2014.01.003
  7. 7. Cao, A., Q. Song, X. Yang, S. Liu, C. Guo. Mammographic Mass Detection by Vicinal Support Vector Machine. – In: IEEE International Joint Conference on Neural Networks, IEEE, Budapest, Hungary, Vol. 3, 2004, pp. 1953-1958.
  8. 8. Vapnik, V. The Nature of Statistical Learning Theory. 2nd Edition. NY, USA, Springer Verlag, 2000.10.1007/978-1-4757-3264-1
  9. 9. Chapelle, O., J. Weston, L. Bottou, V. Vapnik. Vicinal Risk Minimization. – Advances in Neural Information Processing Systems, Vol. 13, MIT Press, MA, USA, 2000, pp. 416-422.
  10. 10. Camastra, F., A. Verri. A Novel Kernel Method for Clustering. – IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 27, 2005, No 5, pp. 801-805.10.1109/TPAMI.2005.88
  11. 11. Leski, J. Fuzzy c-Varieties/Elliptotypes Clustering in Reproducing Kernel Hilbert Space. – Fuzzy Sets and Systems, Vol. 141, 2004, No 2, pp. 259-280.10.1016/S0165-0114(03)00184-2
  12. 12. Rose, K. Deterministic Annealing for Clustering, Compression, Classification, Regression, and Related Optimization Problems. – Proceedings of the IEEE, 1998, pp. 2210-2239.10.1109/5.726788
  13. 13. Zheng, B., S. W. Yoon, S. S. Lam. Breast Cancer Diagnosis Based on Feature Extraction Using a Hybrid of k-Means and Support Vector Machine Algorithms. – Expert Systems with Applications, Vol. 41, 2014, No 4, pp. 1476-1482.10.1016/j.eswa.2013.08.044
DOI: https://doi.org/10.2478/cait-2018-0030 | Journal eISSN: 1314-4081 | Journal ISSN: 1311-9702
Language: English
Page range: 89 - 97
Submitted on: Aug 15, 2017
Accepted on: Apr 2, 2018
Published on: Jun 30, 2018
Published by: Bulgarian Academy of Sciences, Institute of Information and Communication Technologies
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2018 B. Nassih, M. Ngadi, A. Amine, A. El-Attar, published by Bulgarian Academy of Sciences, Institute of Information and Communication Technologies
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.