Have a personal or library account? Click to login
Energy-Aware Task Scheduling Using Hybrid Firefly-BAT (FFABAT) in Big Data Cover

Energy-Aware Task Scheduling Using Hybrid Firefly-BAT (FFABAT) in Big Data

By: M. Senthilkumar  
Open Access
|Jun 2018

Abstract

In modern times there is an increasing trend of applications for handling Big data. However, negotiating with the concepts of the Big data is an extremely difficult issue today. The MapReduce framework has been in focus recently for serious consideration. The aim of this study is to get the task-scheduling over Big data using Hadoop. Initially, we prioritize the tasks with the help of k-means clustering algorithm. Then, the MapReduce framework is employed. The available resource is optimally selected using optimization technique in map-phase. The proposed method uses the FireFly Algorithm and BAT algorithms (FFABAT) for choosing the optimal resource with minimum cost value. The bat-inspired algorithm is a meta-heuristic optimization method developed by Xin-She Yang (2010). This bat algorithm is established on the echo-location behaviour of micro-bats with variable pulse rates of emission and loudness. Finally, the tasks are scheduled with the optimal resource in reducer-phase and stored in the cloud. The performance of the algorithm is analysed, based on the total cost, time and memory utilization.

DOI: https://doi.org/10.2478/cait-2018-0031 | Journal eISSN: 1314-4081 | Journal ISSN: 1311-9702
Language: English
Page range: 98 - 111
Submitted on: Dec 14, 2017
Accepted on: Jun 2, 2018
Published on: Jun 30, 2018
Published by: Bulgarian Academy of Sciences, Institute of Information and Communication Technologies
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2018 M. Senthilkumar, published by Bulgarian Academy of Sciences, Institute of Information and Communication Technologies
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.