Have a personal or library account? Click to login
Classification of Mental Tasks from EEG Signals Using Spectral Analysis, PCA and SVM Cover

Classification of Mental Tasks from EEG Signals Using Spectral Analysis, PCA and SVM

Open Access
|Mar 2018

References

  1. 1. Perez-Marcos, D., M. Solazzi, W. Steptoe, O. Oyekoya, A. Frisoli, T. Weyrich, A. Steed, F. Tecchia, M. Slater, M. V. Sanchez-Vives. A Fully-Immersive Set-Up for Remote Interaction and Neurorehabilitation Based on Virtual Body Ownership. – Frontiersin Neurology, Vol. 3, 2012, No 110.10.3389/fneur.2012.00110339269722787454
  2. 2. Vega, C. F., F. J. R. Fernández. Recognition of Mental Task with the Analysis of Long-Range Temporal Correlations on EEG Brain Oscillation. – In: Proc. of Biosignals and Biorobotics Conference (BRC’12), 2012, ISSNIP.10.1109/BRC.2012.6222167
  3. 3. Golomb, M. R., B. C. Mcdonald, S. J. Warden, J. Yonkman, A. J. Saykin, B. Shirley, M. Huber, B. Rabin, M. Abdelbaky, M. E. Nwosu, M. Barkat-Masih, G. C. Burdea. In-Home Virtual Reality Videogame Telerehabilitation in Adolescents with Hemiplegic Cerebral Palsy. – Arch. Phys. Med. Rehabil, Vol. 91, 2010, pp. 1-8 e1.10.1016/j.apmr.2009.08.15320103390
  4. 4. Lalitharatne, T. D., K. Teramoto, Y. Hayashi, K. Kiguchi. Towards Hybrid EEG-EMG-Based Control Approaches to Be Used in Bio-Robotics Applications: Current Status, Challenges and Future Directions. – Paladyn, Journal of Behavioral Robotics, Vol. 4, December 2013, Issue 2, pp. 147-154.10.2478/pjbr-2013-0009
  5. 5. Manolova, A., G. Tsenov, V. Lazarova, N. Neshov. Combined EEG and EMG Fatigue Measurement Framework with Application to Hybrid Brain-Computer Interface. – In: International Black Sea Conference on Communications and Networking (BlackSeaCom), Sofia, Bulgaria, 2016 (In print).10.1109/BlackSeaCom.2016.7901569
  6. 6. Colorado State University, Brain-Computer Interfaces Laboratory. http://www.cs.colostate.edu/eeg/
  7. 7. Shirazi, A. S., M. Hassib, N. Henze, A. Schmidt, K. Kunze. What’s on Your Mind?: Mental Task Awareness Using Single Electrode Brain Computer Interfaces. – In: Proc. of 5th Augmented Human International Conference, 2014, pp. 45.10.1145/2582051.2582096
  8. 8. Bascil, M. S., A. Y. Tesneli, T. Feyzullah. Multi-Channel EEG Signal Feature Extraction and Pattern Recognition on Horizontal Mental Imagination Task of 1-D Cursor Movement for Brain Computer Interface. Australasian College of Physical Scientists and Engineers in Medicine, 2015.
  9. 9. Moustafa, M., A. Gad. Classification of Mental Tasks Using Support Vector Machine Based on Linear Predictive Coding and New Mother Wavelet Transform. – In: Proc. of International Conference on Biomedical Engineering and Computational Technologies (SIBIRCON’15), 2015.
  10. 10. Hariharan, M., V. Vijean, R. Sindhu, P. Divakar, A. Saidatul, S. Yaacob. Classification of Mental Tasks Using Stockwell Transform. – Journal Computers and Electrical Engineering Archive, Vol. 40, July 2014, Issue 5, pp. 1741-1749.10.1016/j.compeleceng.2014.01.010
  11. 11. Zhang, Y., B. Liu, X. Ji, D. Huang. Classification of EEG Signals Based on Autoregressive Model and Wavelet Packet Decomposition. – Neural Processing Letters, 2017, Issue 2.10.1007/s11063-016-9530-1
  12. 12. Lawhern, V., W. D. Hairston, K. McDowell, M. Westerfield, K. Robbins. Detection and Classification of Subject-Generated Artifacts in EEG Signals Using Autoregressive Models. – J. Neurosci Methods, Vol. 208, 2012, pp. 181-189.10.1016/j.jneumeth.2012.05.01722634706
  13. 13. Hu, D., W. Li, X. Chen. Feature Extraction of Motor Imagery EEG Signals Based on Wavelet Packet Decomposition. – In: Proc. of IEEE/ICME International Conference on ComplexMedical Engineering (CME’11), 2011, pp. 694-697.10.1109/ICCME.2011.5876829
  14. 14. Ubeyli, D. Analysis of EEG Signals by Combining Eigenvector Methods and Multiclass Support Vector Machines. – Computers in Biology and Medicine, Vol. 38, 2008, No 1, pp. 14-22.10.1016/j.compbiomed.2007.06.00217651716
  15. 15. Chang, C.-C., C.-J. Lin. LibSVM: A Library for Support Vector Machines. – ACM Transactions on Intelligent Systems and Technology, Vol. 2, 2011, pp. 27:1-27:27. http://www.csie.ntu.edu.tw/~cjlin/libsvm10.1145/1961189.1961199
  16. 16. Scholkopf, B., A. J. Smola. Learning with Kernels. MIT Press, 2002.10.7551/mitpress/4175.001.0001
  17. 17. Kuremoto, T., Y. Baba, M. Obayashi, S. Mabu, K. Kobayashi. To Extraction the Feature of EEG Signals for Mental Task Recognition. – In: Proc. of 54th Annual Conference of the Society of Instrument and Control Engineers of Japan (SICE’15), 2015, Hangzhou, pp. 264-269.10.1109/SICE.2015.7285468
  18. 18. Liang, N., P. Saratchandran, G. Huang, N. Sundararajan. Classification of Mental Tasks from EEG Signals Using Extreme Learning Machine. – International Journal of Neural Systems, Vol. 16, 2006, No 1, pp. 29-38.10.1142/S012906570600048216496436
DOI: https://doi.org/10.2478/cait-2018-0007 | Journal eISSN: 1314-4081 | Journal ISSN: 1311-9702
Language: English
Page range: 81 - 92
Submitted on: Nov 28, 2017
Accepted on: Dec 20, 2017
Published on: Mar 30, 2018
Published by: Bulgarian Academy of Sciences, Institute of Information and Communication Technologies
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2018 Nikolay N. Neshov, Agata H. Manolova, Ivo R. Draganov, Krasimir T. Tonschev, Ognian L. Boumbarov, published by Bulgarian Academy of Sciences, Institute of Information and Communication Technologies
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.